Строение и классификация бактерий. Микробиология с техникой микробиологических исследований - строение бактерий

Микроорганизмы представлены доклеточными формами (вирусы – царство Vira) и клеточными формами (бактерии, архебактерии, грибы и простейшие). По новому высшему уровню в иерархии классификации среди клеточных форм жизни различают 3 домена (или «империи»): «Bacteria», «Archaea», «Eukarya»:

    домен «Bacteria» - прокариоты, представленные настоящими бактериями (эубактериями);

    домен «Archaea» -прокариоты, представленные архебактериями;

    домен «Eukarya» -эукариоты, клетки которых имеют ядро с ядерной оболочкой и ядрышком, а цитоплазма состоит из высокоорганизованных органелл – митохондрий, аппарата Гольджи и др. Домен «Eukarya» включает царство Fungi (грибы); царство животных Animalia (включает простейшие – подцарство Protozoa); царство растений Plantae.

Домены включают царства, типы, классы, порядки, семейства, роды, виды. Одной из основных таксономических категорий является вид. Вид – это совокупность особей, объединенных по близким свойствам, но отличающихся от других представителей рода.

Совокупность однородных микроорганизмов, выделенных на питательной среде, характеризующихся сходными морфологическими, тинкториальными, культуральными, биохимическими и антигенными свойствами, называется чистой культурой.

Штамм – чистая культура микроорганизмов, выделенных из определенного источника и отличающихся от других представителей вида. Штамм более узкое понятие, чем вид или подвид. Близким к понятию штамма является понятие клона. Клон – совокупность потомков, выращенных из единой микробной клетки.

1.3. Строение и классификация бактерий (прокариот).

Решением Международного кодекса для бактерий рекомендованы следующие таксономические категории: класс, отдел, порядок, семейство, род, вид. Название вида соответствует бинарной номенклатуре, т.е. состоит из двух слов. Например, возбудитель дифтерии пишется как Corynebacterium diphtheriae, возбудитель менингита - Neisseria meningitides, возбудитель туберкулеза - Mycobacterium tuberculosis. Первое слово – название рода и пишется с прописной буквы, второе слово обозначает вид и пишется со строчной буквы.

Бактерии относятся к прокариотам, т.е. доядерным микроорганизмам, поскольку у них имеется примитивное ядро без оболочки, ядрышка, гистонов, а в цитоплазме отсутствуют высокоорганизованные органеллы (митохондрии, аппарат Гольджи, лизосомы и др.).

Согласно второму изданию (2001 г.) Руководства Берджи по систематической батериологии, бактерии делят на 2 домена: «Bacteria» и «Archaea». В домене «Bacteria» можно выделить следующие бактерии: 1) бактерии с тонкой клеточной стенкой – грамотрицательные; 2) бактерии с толстой клеточной стенкой – грамположительные; 3) бактерии без клеточной стенки (микоплазмы). Архебактерии не содержат пептидогликан в клеточной стенке. Термин «архебактерии» появился в 1977г. Это одна из древних форм жизни, на что указывает приставка «архее». Среди них нет возбудителей инфекционных заболеваний.

В домен «Bacteria» входят 22 типа, из которых медицинское значение имеют следующие:

Тип Proteobacteria

Класс Alphaproteobacteria. Роды: Rickettsia, Orientia, Ehrlichia, Bartonella, Brucella.

Класс Betaproteobacteria. Роды: Burkholderia, Alcaligenes, Bordetella, Neisseria, Kingella, Spirillum.

Класс Gammaproteobacteria. Роды: Francisella, Legionella, Coxiella, Pseudomonas, Moraxella, Acinetobacter, Vibrio, Enterobacter, Callimatobacterium, Citrobacter, Edwardsiella, Erwinia, Escherichia, Hafnia, Klebsiella, Morganella, Proteus, Providensia, Salmonella, Serracia, Shigella, Yersinia, Pasteurella.

Класс Deltaproteobacteria. Род Bilophila.

Класс Epsilonproteobacteria. Роды: Campylobacter, Helicobacter, Wolinella.

Тип Firmicutes (главным образом грапположительные)

Класс Clostridia. Роды: Clostridium, Sarcina, Peptostreptococcus, Eubacterium, Peptococcus, Veillonella.

Класс Mollicutes. Роды: Mycoplasma, Ureaplasma.

Класс Bacilli. Роды: Bacillus, Sporosarcina, Listeria, Staphylococcus, Gemella, Lactobacillus, Pediococcus, Aerococcus, Leuconostoc, Streptococcus, Lactococcus.

Тип Actinobacteria

Класс Actinobacteria. Роды: Actinomyces, Arcanodacterium, Mobiluncus, Micrococcus, Rothia, Stomatococcus, Corynebacterium, Mycobacterium, Nocardia, Propionibacterium, Bifidobacterium, Gardnerella.

Тип Clamydiae

Класс Clamydiae. Роды: Clamydia, Clamidophila.

Тип Spirochaetes

Класс Spirochaetes. Роды: Spirochaeta, Borrelia, Treponema, Leptospira.

Тип Bacteroidetes

Класс Bacteroidetes. Роды: Bacteroides, Porphyromonas, Prevotella.

Класс Flavobacteria. Роды: Flavobacterium.

Формы бактерий. Различают несколько основных форм бактерий – кокковидные, палочковидные, извитые и ветвящиеся, нитевидные.

Сферические формы, или кокки – шаровидные бактерии, которые по взаимному расположению делятся на микрококки, диплококки, стрептококки, тетракокки, сарцины и стафилококки.

Микрококки характеризуются одиночным, парным или беспорядочным расположением клеток. Они являются сапрофитами, обитателями воды, воздуха.

Диплококки делятся в одной плоскости и образуют парные кокки, соединенные по две особи. К диплококкам относятся: менингококк, гонококк, пневмококк.

Стрептококки делятся в одной плоскости и располагаются цепочками различной длины. Патогенные для человека стрептококки вызывают гнойно-воспалительные заболевания.

Тетракокки располагаются по четыре, т.к. делятся в двух взаимно перпендикулярных плоскостях. Заболевания человека не вызывают.

Сарцины делятся в трех взаимно перпендикулярных плоскостях и выглядят в виде тюков по 8, 16 и более клеток. Они часто встречаются в воздухе и не являются возбудителями инфекционных заболеваний.

Стафилококки – гроздевидно расположенные кокки, делящиеся в различных плоскостях, вызывают гнойно-воспалительные заболевания у человека.

Палочковидные бактерии подразделяются на бактерии, бациллы и клостридии. К бактериям относятся такие палочковидные микроорганизмы, которые как правило не образуют спор (кишечная, брюшнотифозная, дизентерийные, дифтерийные, туберкулезные и др.). К бациллам (лат. вacillus – палочка) и клостридиям (лат.closter – веретено) принадлежат микробы, образующие споры (сибиреязвенная, столбнячная палочки и др.). По форме палочковидные бактерии бывают короткими (туляремийная, коклюшная, бруцеллезная), длинными (сибиреязвенная), с закругленными концами (большинство палочек), с заостренными концами (фузобактерии), с булавовидными утолщениями на концах (дифтерийная).

Извитые формы бактерий. К этой группе бактерий относятся вибрионы, спириллы, кампилобактерии, хеликобактерии, спирохеты.

Вибрионы – клетки, изгиб которых равен ¼ завитка спирали, имеющие вид запятой.Патогенным представителем является холерный вибрион – возбудитель холеры.

Спириллы – извитые формы бактерий, имеющие изгибы с одним или несколькими оборотами спирали. Из патогенных известен один вид Spirillum minor – возбудитель содоку – болезнь, передающаяся через укус крыс и других грызунов.

Кампилобактерии, хеликобактерии – имеют изгибы как у крыла летящей чайки. Кампилобактерии относятся к возбудителям зоонозных бактериальных инфекций с преимущественным поражением пищеварительного тракта. Хеликобактерии относятся к условно патогенным микроорганизмам, способным вызывать хроническое поражение слизистой желудка и двенадцатиперстной кишки.

Спирохеты представлены 3 родами патогенными для человека: трепонемы, боррелии, лептоспиры.

Трепонемы имеют вид тонких штопорообразно закрученных нитей с 8-12 равномерно мелкими завитками. Патогенным представителем является T. Pallidum – возбудитель сифилиса.

Боррелии в отличие от трепонемболее длинные, имеют по 3-8 крупных завитков. К ним относится возбудитель клещевого боррелиоза или болезни Лайма – B. Burgdorferi.

Лептоспиры имеют завитки неглубокие и частые – в виде закрученной веревки. Концы этих спирохет изогнуты наподобие крючков с утолщениями на концах. Патогенный представитель L interrogans вызывает лептоспироз.

Нитевидные (серобактерии, железобактерии – обитатели водоемов; актиномицеты – ветвящиеся, нитевидные или палочковидные грамположительные бактерии, как и грибы образуют мицелий). К ним относят бактерии родов коринебактерии, микобактерии, нокардия). Патогенные актиномицеты вызывают актиномикоз, нокардии – нокардиоз, микобактерии – туберкулез и лепру, коринебактерии – дифтерию.

Хламидии – облигатные внутриклеточные кокковидные грамотрицательные бактерии. У человека хламидии вызывают поражения глаз (трахома, конъюнктивит), урогенитального тракта, легких.

Микоплазмы – мелкие бактерии, из-за отсутствия клеточной стенки имеют разнообразную форму: кокковидную, нитевидную, колбовидную.

Бактериальную клетку окружает оболочка, состоящая из клеточной стенки и цитоплазматической мембраны. Под оболочкой находится протоплазма, состоящая из цитоплазмы с включениями и ядра, называемого нуклеоидом. Имеются дополнительные структуры: капсула, микрокапсула, слизь, жгутики, пили. Некоторые бактерии в неблагоприятных условиях способны образовывать споры.

Клеточная стенка – прочная, упругая структура, придающая бактерии определенную форму, участвует в процессе деления клетки и транспорте метаболитов, имеет рецепторы для бактериофагов. В клеточной стенке грамположительных бактерий основным компонентом является многослойный пептидогликан (муреин) с которым ковалентно связаны тейхоевые кислоты. У грамотрицательных бактерий основным компонентом является двойной слой липидов. Внутренний слой наружной мембраны представлен фофолипидами, а в наружном слое расположен липополисахарид. Способность грамположительных бактерий при окраске по Грамму удерживать генциановый фиолетовый в комплексе с йодом (сине-фиолетовая окраска бактерий) связана со свойством многослойного пептидогликана взаимодействовать с красителем. Кроме этого, последующая обработка мазка бактерий спиртом вызывает суживание пор в пептидогликане и тем самым задерживает краситель в клеточной стенке. Грамотрицательные бактерии после воздействия спиртом утрачивают краситель, что обусловлено меньшим количеством пептидогликана в клеточной стенке, они обесцвечиваются спиртом и при обработке фуксином приобретают красный цвет. При нарушении синтеза клеточной стенки бактерий под влиянием лизоцима, пенициллина и др образуются клетки с измененной шаровидной формой – протопласты -бактерии, полностью лишенные клеточной стенки. Бактерии с частично сохранившейся клеточной стенкой – сферопласты. Бактерии сферо- или протопластного типа, утратившие способность к синтезу пептидогликана под влиянием антибиотиков или других факторов и способные размножаться, называются L-формами (от названия института им. Д. Листера, где они впервые были изучены). L-формы могут возникать и в результате мутаций. L-формы могут образовывать многие возбудители инфекционных болезней.

Цитоплазматическая мембрана является динамической структурой с подвижными компонентами, поэтому ее представляют как мобильную текучую структуру. Она окружает наружную часть цитоплазмы бактерий и участвует в регуляции осмотического давления, транспорте веществ и энергетическом метаболизме клетки. При избыточном росте (по сравнению с ростом клеточной стенки) цитоплазматическая мембрана образует инвагинаты – впячивания в виде сложно закрученных мембранных структур, называемые мезосомами.

Цитоплазма занимает основной объем бактериальной клетки и состоит из растворимых белков, рибонуклеиновых кислот, включений и многочисленных мелких гранул – рибосом, ответственных за синтез белков. Рибосомы бактерий имеют размер около 20 нм и коэффициент седиментации 70S, в отличие от эукариотических клеток (80S). Поэтому некоторые антибиотики, связываясь с рибосомами бактерий подавляют синтез бактериального белка, не влияя на синтез белка эукариотических клеток.

В цитоплазме имеются различные включения: гранулы волютина, липопротеидные тельца, гликоген, гранулеза, пигментные скопления, сера, кальций. Биологическое значение гранул волютина и липопротеиновых включений состоит в том, что они служат запасным питательным материалом и используются бактериями при недостатке питательных веществ. Характерное расположение гранул волютина выявляется у дифтерийной палочки при окрашивании по Нейссеру.

Нуклеиод – эквивалент ядра у бактерий. Он расположен в центральной зоне бактерий в виде двунитевой ДНК, замкнутой в кольцо. Ядро у бактерий не имеет ядерной оболочки, ядрышка и основных белков (гистонов). В бактериальной клетке содержится одна хромосома, представленная замкнутой в кольцо молекулой ДНК.

Капсула, микрокапсула, слизь. При попадании в макроорганизм патогенные бактерии могут образовывать капсулы толщиной более 0,2мкм. Капсула – мощный слизистый слой вокруг клеточной стенки. Она выявляется при специальных методах окраски мазка по Бурри-Гинсу (сибиреязвенная палочка, клебсиелла, пневмококк). Капсула состоит из полисахаридов или полипептидов. Капсула препятствует фагоцитозу бактерий, она антигена: антитела против капсулы вызывают ее увеличение (реакция набухания капсулы). Многие бактерии образуют микрокапсулу – слизистое образование менее 0,2мкм, выявляемое лишь при электронной микроскопии. От капсулы следует отличать слизь – мукоидные экзополисахариды, не имеющие четких внешних границ. Мукоидные экзополисахариды характерны для мукоидных штаммов синегнойной палочки, часто встречающихся в мокроте больных с кистозным фиброзом. Капсула и слизь предохраняют бактерии от повреждений, высыхания.

Споры. При попадании в неблагоприятные условия внешней среды (высушивание, дефицит питательных веществ) бактерии образуют споры. Спорообразование происходит во внешней среде (почва, питательные среды) и не наблюдаеся в тканях человека и животных. Попадая в благоприятные условия, споры прорастают и превращаются снова в вегетативные формы. Спорообразующие бактерии рода Bacillus, у которых размер споры не превышает диаметр клетки, называют бациллами. Спорообразующие бактерии, у которых размер споры превышает диаметр клетки, отчего они принимают форму веретена, называются клостридиями, например бактерии рода Clostridium. Споры кислотоустойчивы, поэтому по методу Ожешко окрашиваются в красный цвет, а вегетативная клетка – в синий. Форма спор может быть овальной, шаровидной; расположение в клетке – терминальное, т.е. на конце палочки (у возбудителя столбняка), субтерминальное – ближе к концу палочки (у возбудителей ботулизма, газовой гангрены) и центральное (у сибиреязвенной бациллы).

Жгутики бактерий определяют подвижность бактериальной клетки. Это тонкие нити, берущие начало от цитоплазматической мембраны, имеют большую длину, чем сама клетка. Жгутики состоят из белка – флагеллина, являющегося антигеном – так называемый Н – антиген. Число жгутиков у бактерий различных видов варьирует от одного (монотрих) у холерного вибриона до десятка и сотен жгутиков, отходящих по периметру бактерии (перетрих) у кишечной палочки, протея и др. Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки. Жгутики выявляют с помощью электронной микроскопии.

Ворсинки или пили (фимбрии) – нитевидные образования, более тонкие и короткие, чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина. Различают пили, ответственные за адгезию, т.е. за прикрепление бактерий к поражаемой клетке, а также пили, ответственные за питание, водно-солевой обмен и половые (F- пили), или конъюгационные.

Страница 4 из 91

Несмотря на микроскопические размеры и внешнюю простоту устройства бактерии по своему строению представляют собой сложные организмы. Их тонкую структуру удалось установить с помощью электронной микроскопии и микрохимическими исследованиями (рис. 4).
По современным представлениям тело бактерий построено по типу растительных клеток и состоит из оболочки, внутреннего содержимого (цитоплазмы) и ядра.
Оболочка бактерий тонка и бесцветна. Она обусловливает сохранение бактериями относительного постоянства форм и поверхностные свойства бактериальной клетки - поверхностное натяжение, электрический заряд, осмотическое состояние.
В оболочке имеются три слоя: 1) внутренний - цитоплазматическая мембрана, 2) средний - клеточная стенка и 3) наружный - слизистый. Они защищают клетку от вредных факторов окружающей среды.
Цитоплазматическая мембрана находится под клеточной стенкой и составляет наружный слой цитоплазмы. Ее толщина - 50-75 А. На ее поверхности находятся различные ферменты. Одни из них принимают участие в синтезе белков, другие - в процессе дыхания.
Клеточная стенка имеет величину 100-200А. Она довольно плотная, придает бактериям определенную форму и обладает избирательной способностью к веществам окружающей среды и продуктам обмена самой клетки. Клеточная стенка некоторых грамотрицательных бактерий характеризуется многослойным строением и состоит из макромолекул углеводов, липоидов и белков. Такая же многослойная структура присуща и грамположительным бактериям, у которых глубокий слой, граничащий с цитоплазматической мембраной, состоит из белков, а более поверхностно расположен рибонуклеат магния.
Наличие клеточной стенки у бактерий можно доказать при явлениях плазмолиза или плазмоптиз а. Сущность плазмолиза заключается в следующем.

Рис. 4. Схематическое изображение строения бактерийной клетки.
Если бактерии поместить в гипертонический раствор сахара или поваренной соли, то цитоплазма обезвоживается, сморщивается и вместе с цитоплазматической мембраной отходит от клеточной стенки, которая становится отчетливо заметной как в окрашенных, так и неокрашенных препаратах. При обратном отношении концентрации, т. е. когда бактерии находятся в гипотонических растворах или дистиллированной воде, клетки разбухают до крайних пределов, разрываются и клеточная стенка отчетливо выявляется в окрашенном или неокрашенном состоянии (плазмоптиз).
Капсула. Клеточная стенка снаружи покрыта слоем слизи. У некоторых бактерий этот слизистый слой может достигать значительной толщины и тогда вокруг клетки образуется подобие футляра - капсула. Поперечник капсулы иногда во много раз превышает размеры самого микробного тела. Капсулы хорошо видны при специальном методе окраски по Гинсу, на темном фойе препарата выделяется окрашенный микроб, окруженный ободком бесцветной слизи (см. рис. 19). Патогенные бактерии (пневмококк, бациллы сибирской язвы и др.) образуют капсулу только в организме больного человека или животного. Для некоторых микроорганизмов (группа капсульных бактерий - бактерии пневмонии, озены и риносклеромы) наличие капсулы является их постоянным признаком, т. е. они образуют капсулу как в организме, так и вне его. Капсулы для патогенных бактерий являются полезным образованием, защищающим их от вредного воздействия макроорганизма (фагоцитоза, действия антител). Это можно видеть на примере пневмококков и сибиреязвенных бацилл, которые в организме образуют капсулу, а попадая во внешнюю среду, утрачивают ее.
Химический состав капсул неоднороден. У одних бактерий слизистый слой состоит из высокомолекулярных полисахаридов и глюкопротеидов (например, у пневмококка), у других из протеинов (у бацилл сибирской язвы).
Цитоплазма микробов представляет собой смесь коллоидов, имеет жидкую консистенцию. В ее состав входит вода, белки, углеводы, липиды, нуклеиновые кислоты и другие вещества. При электронной микроскопии в цитоплазме обнаруживают мелкие зерна (гранулы) 100-200 А в диаметре, содержащие дегидразы, различные цитохромы, рибонуклеиновую кислоту. Гранулы, богатые РНК, называются рибосомами, в них происходит синтез белков и ферментов. Гранулярные структуры обладают биохимической активностью. Нередко в цитоплазме содержатся разнообразные включения - сера, капли жира (липопротеидные тельца), гранулеза, гликоген, зерна пигмента. Из белковых веществ встречаются зерна волютина, которые представляют собой нуклеопротеид и содержат значительное количество метафосфатов и других соединений фосфора. Особенно хорошо развиты эти зерна у Spirillum volutans и поэтому они получили название волютиновые. Зерна волютина отличаются метахромозией, т. е. окрашиваются темнее цитоплазмы или избирательно принимают иную окраску, чем цитоплазма. Отсюда еще одно их название - метахроматические зерна. Наличие зерен волютина является одним из диагностических признаков при определении микроорганизмов (например, у дифтерийной палочки). Липопротеидные тельца и гранулы волютина используются бактериями при недостатке питательных веществ в среде. У некоторых микробов (кишечная палочка, микобактерии, сальмонеллы и др.) встречаются округлые или эллипсоидные зерна различной величины и содержащие фосфолипиды (м итохондрии). Митохондрии обладают системой окислительно-восстановительных ферментов и принимают участие в дыхательных процессах и анаэробном бродилыюм распаде веществ. В цитоплазме встречаются также вакуоли (6-10 и более), состоящие из различных растворенных в воде веществ. Вакуоли окружены мембраной - тонопластом. Роль вакуолей в жизнедеятельности бактерий не выяснена. На периферии цитоплазмы обнаруживаются тельца - мезосомы, играющие большую роль в образовании клеточной стенки и делении.
У некоторых бактерий удается воздействием пенициллина, лизоцима или бактериофага отделить цитоплазму от клеточной стенки. Бактерии, лишенные клеточной стенки, называются протопластами. Они представляют собой сферической формы тела, которые при соответствующих осмотических условиях обладают способностью к росту, дыханию, синтезу ферментов, протеинов, нуклеиновых кислот, спорообразованию. В отличие от бактерий протопласты не размножаются, весьма чувствительны к изменениям осмотического давления, механическим воздействиям и аэрации, действию антибактериальных веществ.
При частичной потере клеточной стенки наблюдается образование сферой ластов. В отличие от протопластов сферопласты сохраняют способность адсорбировать на себе бактериофаги.
Ядро. У бактерий (нуклеоид) ядро является важнейшим органоидом клетки, принимающим участие в жизнедеятельности, делении и спорообразовании. Компактное ядро встречается у крупных микроорганизмов (дрожжевых и дрожжеподобных грибах) и хорошо видно в обычном оптическом микроскопе при специальных методах окраски. У бактерий ядро мелкое и становится видимым только в электронном микроскопе. С помощью электронного микроскопа было доказано не только наличие у бактерий ядра в виде плотного хроматинового тяжа, но и выявлены изменения его формы, размеров и степени компактности. Доказано также, что более зрелым и старым клеточным формам свойственны более компактные ядра. Наличие хроматиновой субстанции у бактерий доказано и с помощью микрохимической нуклеальной реакции на тимонуклепновую кислоту, являющуюся обязательной частью хроматина.
Ядерная структура микробной клетки состоит из дезоксирибонуклеиновой кислоты (ДНК) и выполняет основные функции ядра - самоудвоение, контролирование синтеза специфических белков, передача наследственных признаков потомству.
Споры. Для многих бактерий характерно образование спор. В отличие от вегетативных форм, которые представляют собой активную стадию бактериальной клетки, когда энергично проявляются все физиологические функции, споры - это покоящаяся форма микроорганизма. Спорообразование происходит обычно тогда, когда во внешней среде для бактерий создаются неблагоприятные условия: накопление вредных продуктов обмена, соответствующая температура, действие солнечных лучей, старение культуры микроорганизма на питательной среде и т. п. В организме человека и животных спорообразование не наблюдается.
То обстоятельство, что спорообразование наступает при условиях, неблагоприятных для жизнедеятельности бацилл, свидетельствует о том, что спора является приспособлением, служащим не для размножения клеток, а для сохранения вида. Это подтверждается еще и тем, что одна бактериальная клетка способна образовывать только одну спору.
Споры у различных бацилл отличаются друг от друга по форме, размеру и расположению в клетке. Например, спора у столбнячной палочки круглая, расположена на конце (терминально) и диаметр ее больше диаметра тела бацилл (см. рис. 17), а споры возбудителя сибирской язвы располагаются центрально, имеют овальную форму и диаметр их не превышает поперечника микробной клетки (см. рис. 97). Субтерминальное (ближе к одному концу) расположение споры характерно для возбудителей газовой гангрены, ботулизма.
Процесс спорообразования происходит у бактерий в относительно короткий срок (примерно в течение 24 часов). Сущность процесса заключается в том, что содержимое микробной клетки постепенно уплотняется и, концентрируясь в одном месте, покрывается плотной оболочкой. Постепенно вегетативная часть бактериальной клетки отмирает. Оболочка споры состоит из двух слоев: наружного и внутреннего. Наружный слой трудно проницаем для воды и различных веществ, из внутреннего при прорастании споры образуется клеточная оболочка бактерий. Попав в условия, благоприятные для развития (наличие необходимой питательной среды, влажности, температуры), споры быстро прорастают, превращаются в вегетативные формы. При этом оболочка споры сначала разбухает, а потом растворяется или разрывается, благодаря действию ферментов и из нее выходит бактерийный проросток, одетый в тонкую оболочку и превращающийся затем в вегетативную клетку.
Процесс прорастания спор занимает обычно 4-5 часов. Малая проницаемость оболочки спор является причиной того, что при обычных методах окраски они остаются бесцветными. Чтобы их окрасить, нужно применить энергичные воздействия, приводящие к разрыхлению оболочки. Химический состав споры характеризуется малым количеством свободной воды и большим содержанием липоидов, что в значительной степени обусловливает устойчивость спор к воздействию ряда неблагоприятных физических и химических факторов. Например, температура 100° не убивает споры; для их уничтожения необходимо воздействие более высоких температур. Низкие температуры и высушивание споры выдерживают в течение многих лет. Спорообразование характерно для бацилл, среди кокковых форм оно встречается редко (у мочевой сарципы, энтерококка).
Жгутики. Все бактерии подразделяются на подвижные и неподвижные. Среди подвижных встречаются ползающие и плавающие. Ползающие бактерии медленно передвигаются (ползут) по опорной поверхности в результате волнообразных сокращений их тела (например, Myxobacterium). Плавающие бактерии свободно передвигаются в жидкой среде при помощи жгутиков. Жгутики - это тончайшие, эластические извитые нити, начинающиеся от базальных гранул в цитоплазме и выходящие наружу через оболочку. Их диаметр измеряется сотыми долями микрона (0,02-0,05 мк), а длина их иногда во много раз превышает размеры тела самого микроба. Жгутики - хрупкие образования и быстро отрываются от клеток при встряхивании, других механических воздействиях и обработке различными химическими веществами. Число и расположение жгутиков у различных микроорганизмов неодинаковы. В этом отношении подвижные бактерии разделяются на несколько типов (рис. 5).

  1. Монотрихи - бактерии с одним жгутиком на конце (например, холерный вибрион).


Рис. 5. Жгутики у бактерий.

  1. Лофотрихи - бактерии с пучком жгутиков на одном из полюсов клетки (например, Bact. faecalis alcaligenes).
  2. Перитрихи - бактерии со жгутиками, расположенными вокруг всего тела микроба (например, бактерии тифо-паратифозной группы).

Жгутики настолько тонки, что их не удается видеть при обычной микроскопии препаратов с живыми или убитыми микробами. Обнаружить жгутики можно следующим образом:
а) при микроскопировании в затемненном поле зрения со специальным конденсором, создающим сильное боковое освещение, в приготовленной «висячей» или «раздавленной» капле (см. стр. 53).
б) в препарате с подвижными бактериями после специальной обработки протравой, например раствором танина. Этим достигается набухание жгутиков и увеличение их размера (диаметра). После окраски соответствующим красителем такого препарата жгутики становятся видимы при обычном микроскопировании.


Рис. 6. Жгутики под электронным микроскопом.


Рис. 7. Бахромки (реснички) под электронным микроскопом.

При электронной микроскопии (рис. 6) можно не только хорошо увидеть жгутики, но и ознакомиться с деталями их строения. Они имеют спиралевидную форму и винтообразное строение. Осевая нить жгутиков состоит из двух перевитых нитей, покрытых чехлом. В состав жгутиков входит особый белок - флагеллин, сокращением которого определяется интенсивность и характер движения бактерий. Наиболее быстрые и прямолинейные движения совершают монотрихи и лофотрихи. Например, холерный вибрион передвигается со скоростью 30 мк в секунду, что превосходит его размер в 30 раз. Перитрихам присущи менее энергичные и более беспорядочные движения. Характер движения бактерий зависит также от возраста и свойств культуры (молодые клетки двигаются более энергично), температуры (оптимальная температура способствует движению), наличия химических веществ и других факторов. При неблагоприятных условиях существования бактерии могут лишиться жгутиков, сохраняясь в таком состоянии в ряде последующих поколений. Поверхность тела у ряда бактерий покрыта многочисленными бахромками - ресничками, ворсинками (рис. 7). Роль бахромок в жизнедеятельности бактерий пока не выяснена. Полагают, что бахромками микробы прикрепляются к поверхности определенных субстратов и возможно принимают участие в питании бактериальной клетки.

СПИРОХЕТЫ

К группе спирохет относятся микроорганизмы, имеющие извитую форму и по своим биологическим свойствам занимающие промежуточное положение между бактериями и простейшими. Тело спирохет состоит из цитоплазмы, которая в виде спирали расположена вокруг центральной осевой нити, образуя первичные завитки. Изгибы осевой нити образуют вторичные завитки, число которых и форма характерны для различных видов спирохет. Они не имеют клеточной оболочки и компактного, оформленного ядра. Некоторые спирохеты имеют длинные тонкие жгуты, располагающиеся пучками по концам тела и видимые в электронном микроскопе. Спирохеты подвижны, что обусловливается сократимостью их цитоплазмы и эластичностью осевой нити. Различают вращательные, сгибательные и поступательные движения. Размножаются спирохеты путем простого поперечного деления, трудно культивируются на питательных средах. К патогенным спирохетам относятся возбудитель сифилиса - бледная спирохета, спирохета возвратного тифа (рис. 8 на вклейке) и лептоспиры, вызывающие у человека желтушный и безжелтушный лептоспирозы.


Рис. 8. Спирохеты возвратного тифа в крови.

РИККЕТСИИ

  1. Тип а, или кокковидные риккетсии, в виде очень мелких овоидов или эллипсоидов («коккобациллы») диаметром около 0,5 мк, часто образующие диплоформы или цепочки.
  2. Тип в, или палочковидные риккетсии, в виде нежных коротких палочек диаметром от 1 до 1,5 мк.
  3. Тип с, или бациллярные (длинные палочковидные) риккетсии, в виде удлиненных и обычно изогнутых тонких палочек размером 3-4 мк.
  4. Тип d, или нитевидные риккетсии, в виде длинных нередко гигантских причудливо изогнутых нитей, напоминающих крупные спириллы размером 10- 20-40 мк и больше.

Патогенные риккетсии вызывают заболевания у человека и животных, типичным представителем риккетсий является Rickettsia provaceki - возбудитель сыпного тифа.

Ряд инфекционных болезней человека, животных и растений, вызывается такими микробами, размеры которых исчисляются в миллимикронах. К вирусным заболеваниям относятся: оспа, бешенство, полиомиелит, грипп, корь и др. В настоящее время насчитывается более 500 вирусов, поражающих человека и животных.
Строение вирусов доступно изучению лишь при больших увеличениях электронного микроскопа. Форма их бывает круглой, палочковидной, кубоидалыюй и нитевидной. Размеры вирусов колеблются от 10 до 350 ммк. Наиболее крупные вирусы называются элементарными тельцами. Если их величина больше 0,2 мк, то они видимы в обычном, оптическом микроскопе с помощью иммерсионной системы. Элементарные тельца при оспе (размер их около 0,2 мк) могут быть обнаружены в оптическом микроскопе только при специальном методе обработки (метод Морозова).
По данным электронномикроскопических исследований, центральная часть вируса представляет собой нуклеиновую кислоту - нуклеоид, образование, напоминающее ядро, заключенное в оболочку - капсиду, состоящую из отдельных белковых субъединений - к а п с ом е р о в. Более сложно устроенные вирусы, кроме капсиды, имеют внешнюю оболочку, в состав которой входят углеводы, липиды. При некоторых вирусных инфекциях в клетках пораженных тканей обнаруживаются особые включения, строение которых и расположение всегда характерны для определенного вируса. Так, при бешенстве в цитоплазме нервных клеток головного мозга обнаруживаются включения в виде телец Бабеша - Негри, в цитоплазме клеток эпителия при оспе - тельца Гварниери и т. д. Величина внутриклеточных включений колеблется от 0,25 до 20-30 мк, форма их круглая и овальная, грушевидная, веретенообразная или серповидная. Располагаются они в цитоплазме или ядрах клеток, а иногда и в цитоплазме и ядре. Природа внутриклеточных включений точно не выяснена. Полагают, что они являются реактивными образованиями клеток, в которых скопляются вирусные частицы (колонии вирусов). Для обнаружения внутриклеточных образований, что имеет большое диагностическое значение, готовят мазки или срезы из ткани и окрашивают их специальными методами (по Морозову, по Туревичу, или по Муромцеву).

Общая часть

ЛАБОРАТОРНАЯ ДИАГНОСТИКА ИНФЕКЦИОННЫХ

Шевченко А.А., Шевченко Л.В., Черных О.Ю., Шевкопляс В.Н.

Краснодарского края

И Департамента науки и образования администрации

При поддержке Российского фонда фундаментальных исследований

КРАСНОДАР

Владимир Николаевич Шевкопляс

Олег Юрьевич Черных

Людмила Васильевна Шевченко

Александр Алексеевич Шевченко

АГРАРНЫЙ УНИВЕРСИТЕТ

КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ

Образования

РОССИЙСКОЙ ФЕДЕРАЦИИ

КРАСНОДАР

ЛАБОРАТОРНАЯ ДИАГНОСТИКА ИНФЕКЦИОННЫХ БОЛЕЗНЕЙ ЖИВОТНЫХ

В.Н. ШЕВКОПЛЯС

О.Ю. ЧЕРНЫХ

Л. В. ШЕВЧЕНКО

А. А. ШЕВЧЕНКО

АГРАРНЫЙ УНИВЕРСИТЕТ

КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ

Образования

РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА

Федеральное государственное образовательное

учреждение высшего профессионального

Учебное пособие

БОЛЕЗНЕЙ ЖИВОТНЫХ. Краснодар: КубГАУ, 2009. 584с.

В руководстве изложены основные общие вопросы и методы

лабораторной диагностики инфекционных болезней животных,
вызываемых бактериями и вирусами.

Для студентов высших учебных заведений факультетов
ветеринарной медицины и биологических специальностей.

РЕЦЕНЗЕНТЫ:

И.А. Болоцкий – доктор ветеринарных наук, зав. лабораторией
Краснодарского НИВИ

Ю.Ф. Мишанин – доктор биологических наук, академик РАЕ,
профессор Кубанского государственного технологического
университета.

ФГОУ ВПО «Кубанский государственный аграрный университет»

350044, Краснодар, ул. Калинина, 13

Микро­бы - это в основном одноклеточные бесхлорофилльные организ­мы прокариотического типа. По форме различают шаровидные, палочковидные и извитые микробы (рис. 1).

Рис. 1. Основные формы микроорганизмов (схема):

шаровидные: 1 - стафилококки, 2 - диплококки, 3 -стрептококки, 4 -тетракокки, 5 - сарцины; палочковидные: 6 - бактерии, 7 - стрептобактерии, 8 - бациллы, 9 - стрептобациллы; извитые:
10 - вибрионы, 11 - спириллы, 12 - спирохеты.


Палочковидные, или цилиндрические, формы принято делить на бактерии и бациллы. Бактерии - па­лочковидные формы, не образующие спор (пишут Bact, например Bact. aceti). Бациллы - палочковидные формы, образующие споры (пишут Вас, например Вас. subtilis). Бактерии и бациллы бывают разными по форме и размерам. Концы палочек чаще закруглены, но могут быть срезаны под прямым углом (возбудитель сибирской язвы), иногда сужены. У мелких бактерий разница между длиной и шириной невелика; по внешнему виду они напоминают кокки, в связи с чем такие формы получили название коккобактерии (возбудитель бруцеллеза).

Спорообразующие микроорганизмы окрашиваются в основном по Граму положительно. Большинство из них имеют палочковид­ную форму и лишь Sporosarcina - шаровидную.

Среди палочковидных форм, образующих споры, различают бациллы и клостридии. Бациллы, за исключением Вас. anthracis, подвижны. Бациллы - аэробы. У бацилл споры не превышают толщины вегетативной клетки. Клостридии - анаэробы. Споры толще вегетативной клетки. Такие формы напоминают веретено, ракетку, лимон, барабанную палочку. Клостридии принимают участие во многих процессах в природе. Являются возбудителями анаэробных инфекций. Вызывают аммонификацию белковых ве­ществ, мочевины. Разлагают фосфорорганические соединения. Фиксируют молекулярный азот и др.

Палочки, как и кокки, могут располагаться попарно или це­почкой. При соединении бактерий попарно образуются диплобактерии, при таком же соединении бацилл - диплобациллы. Со­ответственно образуются стрептобактерии и стрептобациллы, если клетки располагаются цепочкой. Тетрад и пакетов палочко­видные формы не образуют, так как они делятся в одной плоско­сти, перпендикулярной продольной оси. Термин «бактерии» применяют для обозначения палочковидных форм, не образую­щих спор, и это правильно, в то время как многие авторы ис­пользуют его как собирательное название разных микроорганиз­мов. Мы считаем, что вместо «бактерии» следует применять сло­во «микроорганизмы», или кратко «микробы».

Извитые формы микробов определяют не только по длине и диаметру, но и по количеству завитков. Вибрионы напоминают по форме запятую. Спириллы - извитые формы, образующие до 3-5 завитков. Спирохеты - тонкие длинные извитые формы с множеством завитков. Они занимают промежуточное положение между бактериями и простейшими. Микобактерии - палочки с боковыми выростами (возбудители туберкулеза, паратуберкулеза). Коринебактерии напоминают микобактерии, но отличаются от них образующимися на концах утолщениями и включениями зерен в цитоплазме (дифтерийная палочка). Нитчатые бактерии - мно­гоклеточные организмы, имеющие форму нити. Миксобактерии - скользящие микробы, по форме напоминающие палочки или ве­ретено. Простекобактерии могут быть треугольной или иной фор­мы. У некоторых из них лучевая симметрия. Свое название такие организмы получили по наличию остроконечных выростов - простек. Размножаются они делением, или почкованием. Так, у тре­угольных форм на одной из вершин образуется почка, которая при достижении размеров материнской клетки отделяется. С помо­щью простек, расположенных на двух других вершинах, происхо­дит улавливание пищи. Простекобактерии обычно неподвижны; подвижные формы образуют круговые движения. Спор не образу­ют, по Граму не окрашиваются. Растут на картофельной среде (агаре) при температуре 28 °С.

Размеры микробов.Микробы - микроскопические организмы. Их размеры определяются в микрометрах(мкм) (10- 6 м по системе СИ). Диаметр шаровидных форм 0,7-1,2 мкм; длина палочковид­ных
1,6-10 мкм, ширина 0,3-1 мкм. Вирусы - еще более мелкие существа. Их размеры определяются в нанометрах(1 нм = 10- 9 м).

Примерные размеры некоторых микробов, мкм

Основные группы микроорганизмов и принципы их классифика­ции. Ветеринарная микробиология изучает бактерии, вирусы, па­тогенные грибы, риккетсии, микоплазмы, хламидии. Для класси­фикации микроорганизмов используют комплекс признаков: фенотипические (морфология, культуральные, физиологические и другие свойства) и генотипические (структуры и гибридизация ДНК для установления гомологии). Методы геносистематики по­зволяют определять микроорганизмы не по сходству их призна­ков, а по степени родства.

Определение вида микроорганизма в практической работе проводят по его основным свойствам: морфологии, росту на питательных средах, биохимическим свойствам, отношению к различным краскам, по антигенным свойствам, патогенности для животных и др. По этим признакам находят место изучаемого микроба в классификационной таблице определителя.

Для обозначения видов принята двойная (бинарная) номен­клатура - название каждого микроба состоит из двух слов: пер­вое слово обозначает род, пишется с прописной буквы; второе - обозначает вид и пишется со строчной буквы. Например, возбу­дитель сибирской язвы - Bacillus anthracis, возбудитель мыта - Streptococcus equi.

Классификация бактерий. Бактерии - микроскопические представители растительного мира - объединены в царство про­кариотов, которое включает отделы, разделенные на классы, по­рядки, семейства, роды, виды.

Вид - основная таксономическая единица. Бактерии с от­клонениями от типичных свойств вида называют подвидом, при отличии по каким-то отдельным свойствам - вариантом (например, по серологическим свойствам - серологический ва­риант, или серовар).

Патогенные для животных бактерии есть в двух классах: 1) в классе шизомицет - возбудители мелиоидоза, кампилобактериоза, болезни укуса крыс, бруцеллеза, туберкулеза, лептоспироза и др. В отдельные семейства выделены возбудители риккетсиозов и хламидиозов; 2) в классе молликутов - возбудители микоплаз­мозов животных: контагиозной плевропневмонии крупного рога­того скота, агалактии овец и коз и др.

Классификация вирусов. Она проводится по типу нуклеиновой кислоты, числу нитей в ней, относительной молекулярной массе, размеру и особенностям строения- вирусных частиц и репродук­ции вирусов, кругу хозяев, патогенности, способам передачи. Вирусы делятся на две группы: содержащие дезоксирибонуклеиновую кислоту (ДНК) и содержащие рибонуклеиновую кислоту (РНК).

К ДНК-содержащим вирусам относят: аденовирусы (возбудители аденовирусных болезней животных); герпесвирусы (возбудители болезней Ауески и Марека, ринопневмонии лоша­дей, инфекционного ринотрахеита крупного рогатого скота); паповавирусы (вирусы бородавок рогатого скота и собак); парвовирусы (парвовирусные инфекции свиней, собак, кошек, крупного рогатого скота, кроликов, гусей, алеутская болезнь норок, панлейкопения кошек); поксвирусы (возбудители оспы животных, миксоматоза кроликов, эктимы овец).

К РНК-содержащим вирусам принадлежат: бунъявирусы (возбудители болезни Акабане, лихорадки долины Рифт, болезни Найроби); калицивирусы (вирус везикулярной экзантемы свиней, морских львов Сан-Мигель, калицивирус кошек, возбу­дитель геморрагической болезни кроликов); коропавирусы (вирус инфекционного бронхита птиц, трансмиссивного гастроэнтерита свиней); орбивирусы (вирус инфекционной катаральной лихорад­ки овец, африканской чумы лошадей, эпизоотической геморра­гической болезни оленей); ортомиксовирусы (возбудители гриппа животных); парамиксовирусы (возбудители ныокаслской болезни, парагриппа, чумы плотоядных, чумы крупного рогатого скота); пестивирусы (вирус классической чумы свиней, диареи крупного рогатого скота); пикорнавирусы (возбудители ящура, энтеровирусы животных, возбудители везикулярной болезни свиней, болез­ни Тешена); рабдовирусы (возбудители бешенства, везикулярного стоматита); ретровирусы (возбудители лейкоза животных, вирус висны-маэди овец); тогавирусы (возбудители энцефаломиелитов лошадей - восточного, западного и венесуэльского, японского энцефалита, менингоэнцефалита индеек). Ряд вирусов пока еще не классифицирован.

В практической работе выделенные вирусы определяют путем фильтрации через фильтры с определенными размерами пор, электронной микроскопией, по чувствительности к эфиру и дезоксихолату, определенным показателям рН и химическим веще­ствам, позволяющим установить тип нуклеиновой кислоты, по способности размножаться в куриных эмбрионах, культурах кле­ток и организме специфически восприимчивых животных.

Классификация грибов. Грибы - растительные микроорганиз­мы, не содержащие хлорофилла. Их насчитывают более 100 тыс. видов, объединенных в 20 классов. Болезни животных вызывают грибы, относящиеся к классам фикомицетов, аскомицетов (сум­чатых), базидиомицетов и несовершенных грибов.

Морфология и строение бактерий. Бактерии (от греч. bacte­ria - палочка) - преимущественно одноклеточные микроорга­низмы, имеющие клеточную стенку, ДНК и РНК, неоформлен­ное ядро без оболочки, лишены хлорофилла, размножаются про­стым делением. Спорообразующие аэробные бактерии называют бациллами (например, возбудитель сибирской язвы), анаэроб­ные - клостридиями (возбудители столбняка, брадзота). Величи­на бактерий от 0,1 до 20 мкм. Форма и размеры их могут изме­няться в зависимости от внешних условий. Но при определенных стабильных условиях бактерии сохраняют постоянно присущую данному виду морфологию, выработанную в процессе эволюции. Различают 4 основные формы бактерий: шаровидные (кокки), палочковидные (бактерии, бациллы и клостридии), извитые спи­ралевидные (вибрионы, спириллы), нитевидные (хламидобактерии) (рис. 1).

Кокки чаще имеют форму шара. По взаимораспо­ложению, зависящему от плоскости деления, их можно разделить на группы: микрококки, расположенные одиночно и беспорядоч­но; диплококки - парные кокки; стрептококки - цепочки кок­ков; тетракокки, расположенные по четыре клетки; сарцины - пакеты кокков в несколько рядов; стафилококки - скопления кокков, напоминающие виноградные грозди.

Палочковидные (цилиндрические) бактерии, бациллы и клостри­дии бывают короткими, длинными, с закругленными, обрублен­ными или заостренными концами. Парные палочки называют диплобактериями, цепочки палочек - стрептобактериями. У некоторых бактерий обнаруживают боковые выросты или булаво­видные утолщения на концах клетки.

Извитые спиралевидные бактерии: вибрионы, изогнутость тел которых не превышает, одной четверти оборота; спириллы и спи­рохеты - с изгибами из одного или нескольких оборотов.

Рис. 1. Основные формы бактерий:

1 - стафилококки; 2 и 3 - диплококки; 4 - стрептококки; 5 - тетракокки; 6 - сарцины;
7, 8 и 9 - различные виды палочек; 10 - вибрионы; 11 - спириллы; 12 - спирохеты

Нитевидные - серобактерии, железобактерии - непатогенные обитатели водоемов.

Строение бактерий. Бактерии состоят из оболочки, цитоплазмы, нуклеоида (ядра) и других структур (рис. 2). Оболоч­ка бактерий - тонкая пленка, в которой заключено содержимое бактериальной клетки. Придает бактериям определенную форму, через нее проходят необходимые для жизнедеятельности клетки вещества и выводятся ненужные продукты обмена веществ. За­щищает бактерию от воздействия вредных факторов внешней среды. Состоит из клеточной стенки и цитоплазматической мем­браны. У бактерий некоторых видов имеется капсула.

Клеточная стенка бактерий состоит из наружного (липопротеидного), среднего (липополисахаридного) и внутреннего (ригид­ного, мукополимерного) слоев. Она проницаема для солей, со­держит ферменты. К ее внутренней поверхности прилегает цитоплазматическая мембрана, состоящая из липидного и протеинового слоев. Она также содержит ферменты и играет роль осмотического барьера. Если действием лизоцима раство­рить клеточную стенку, то такая бактерия превращается в про­топласт.


Капсула - слизистый слой вокруг клеточной стенки у бакте­рий некоторых видов, предохраняющий их от фагоцитоза и дей­ствия антител. Состоит из полисахаридов, глюкопротеинов или полипептидов, у некоторых бактерий - из протеинов. Является фактором вирулентности бактерий некоторых видов (например, у возбудителя сибирской язвы капсула обнаруживается только в организме животных или человека, см. рис. 14).

Цитоплазма бактерий - внутреннее содержимое клетки. Это коллоидная система, состоящая из воды, белков, нуклеиновых кислот и других веществ. В ней происходят сложные процессы обмена веществ. Цитоплазма содержит мелкие зерна - ри­босомы (рибонуклеопротеиды), функция которых - синтез белка; плазмиды - генетические внехромосомные структуры в виде молекул ДНК; различные включения - гранулы волютина, липопротеиновые тела, гликоген, гранулезу, пигментные скопле­ния, серу, кальций - это резерв питательных веществ клетки или конечные продукты ее обмена; вакуоли, число которых увеличи­вается по мере старения клетки; мезосомы - особые мембранные системы, участвующие в обмене веществ и делении клетки. Су­ществует две группы бактерий, цитоплазма которых имеет раз­ный химический состав. Одни окрашиваются по Граму положи­тельно, другие - отрицательно, что имеет большое значение при дифференциальной диагностике.

Рис. 3. Жгутики бактерий:

1 - монотрихи; 2 - амфитрихи; 3 - лофотрихи; 4 - перитрихи

Нуклеоид (ядро) - плотный хроматиновый тяж в центре бакте­рии, состоит из клубка двойных нитей ДНК.

Жгутики - цитоплазматические тонкие и длинные нити (рис. 3), состоящие из белка - флагелина; обеспечивают движе­ние бактерии. Их обнаруживают с помощью особых методов ок­раски или при исследовании в электронном микроскопе. Бакте­рии по расположению жгутиков и их числу делятся на: моно­трихи - с одним жгутиком на конце; амфшприхи - с двумя полярно расположенными жгутиками; лофотрихи - с пучком жгутиков на одном конце клетки; перитрихи - жгутики распола­гаются по всей поверхности клетки. Характер движения бактерий зависит от числа жгутиков и их расположения, возраста культуры, температуры инкубирования, наличия химических веществ и дру­гих факторов. Наиболее подвижны моно- и лофотрихи, они дви­жутся прямолинейно. Перитрихи движутся беспорядочно.

Подвижность бактерий устанавливают специальными метода­ми. Это свойство используют для дифференциации бактерий.

Кроме активной подвижности микробы способны к молекуляр­ному (пассивному) броуновскому движению, что нужно учиты­вать при оценке степени подвижности бактерий.

Бахромки (пили, реснички, ворсинки) покрывают тело бакте­рий отдельных видов. Они короче и тоньше жгутиков.

Споры - одна из стадий развития бацилл и клостридий, выра­ботанная в процессе эволюции в борьбе за сохранение вида. Спорообразование начинается с появления в клетке спорогенной зоны, затем образуется проспора и, наконец, зрелая спора. Это сопровождается уплотнением цитоплазмы, концентрацией ядер­ной субстанции и формированием плотной трехслойной оболоч­ки. Споры образуются при воздействии неблагоприятных факто­ров (недостаток питательных веществ), старении культуры, а также при определенной температуре и степени аэрации. Так, возбудитель сибирской язвы образует споры при доступе кисло­рода, а возбудитель столбняка - в его отсутствие. Споры устой­чивы, длительно сохраняются в неблагоприятных условиях, вы­держивают кипячение и действие концентрированных дезинфи­цирующих веществ. Вблагоприятных условиях они прорастают в вегетативные клетки. Споры могут располагаться в разных частях микробной клетки, диаметр спор может превышать поперечник бактериальной клетки.

Морфология и строение актиномицетов (лучистых грибов). Клетки актиномицетов - тонкие ветвящиеся нити (гифы) без перегородок, поэтому все разветвление представляет как бы одну клетку. Размножаются с помощью воздушных спор, образующих­ся на ветках мицелия, или путем фрагментации - распада цито­плазмы на отдельные клетки. Гифы актиномицетов имеют обо­лочку, в цитоплазме обнаруживают вакуоли, различные включе­ния, диффузно расположенную ядерную субстанцию. Таким образом, по морфологии, диффузному ядру, свойствам цитоплаз­мы и оболочки, отношению к краскам и питательным веществам актиномицеты сходны с бактериями, а по способу размножения (образование спор и их прорастание) сходны с низшими гриба­ми. В настоящее время их принято относить к бактериям, а не к грибам (цв. табл. 1).

Из патогенных актиномицетов известны возбудители актиномикоза животных и человека. В пораженных тканях мицелий гриба образует плотные зерна (друзы) из переплетенных нитей. Огромное значение имеют виды актиномицетов - продуцентов антибиотиков (стрептомицина, хлортетрациклина и др.). Особого внимания заслуживают актиномицеты из рода Mycobacterium. Мицелий у них не образуется, клетки палочковидные, ветвящие­ся. К ним относятся возбудители туберкулеза.

Морфология и строение спирохет. Спирохеты - группа микро­организмов с характерными свойствами и с признаками, общими для бактерий и простейших; имеют штопорообразную извитую форму. Тело их состоит из осевой нити и цитоплазмы; офор­мленного ядра, спор, капсул и жгутиков не обнаружено. Вместо оболочки - тонкий эктоплазматический слой - перипласт. Об­ладают подвижностью благодаря сокращениям тела клетки.

К спирохетам относятся лептоспиры - возбудители лептоспироза животных.

Морфология и строение микоплазм. Микоплазмы - самые мелкие из бактерий, спор не образуют, неподвижны. Растут на сложных питательных средах. Колонии врастают в твердые среды, имеют вид «глазуньи». Микоплазмы полиморфны, так как у них нет истинной клеточной оболочки (есть только трехслой­ная мембрана). Отмечают шаровидную, зернистую, нитевидную, кольцевидную формы. Микоплазмы проходят через бактериаль­ные фильтры и растут на средах, не содержащих живых клеток. Все это позволяет считать их промежуточными микроорганизма­ми между бактериями и вирусами.

К патогенным для животных принадлежат возбудители конта­гиозной плевропневмонии крупного рогатого скота, агалактии овец и коз, контагиозной плевропневмонии коз и овец, респира­торного микоплазмоза птиц. Микоплазмы также контаминируют куриные эмбрионы и культуры клеток, что затрудняет выращива­ние вирусов.

К патогенным для животных относятся возбудители Ку-лихорадки, гидроперикардита крупного рогатого скота (ко удриоза).

Бактерии, относящиеся к семейству хламидий. У крупного рогатого скота, овец и свиней встречается Ch. picorni, у птиц - Ch. psittaci, а у кошек - Ch. pneumoniae. Два последних вида патогенны и для людей.

(Морфология вирусов описана в главе 5«Основы учения о вирусах» раздела I.)

Морфология и строение грибов. Грибы размножаются спора­ми, имеют вегетативное тело в виде мицелия. Интерес для вете­ринарной микробиологии представляют плесени, дрожжи и не­совершенные грибы.

Плесени (гифомицеты) образуют длинные гифы, форми­рующие грибницу (мицелий). Гифа имеет оболочку, цитоплазму и ядро. В цитоплазме находят включения, зерна и вакуоли. Широко распространены в природе мукоровые грибы (головчатая плесень). Они имеют ветвящийся одноклеточный мицелий, раз­виваются в сырых местах.

Плесень пенициллиум (кистевидная плесень) также широко рас­пространена в природе, ее обнаруживают в почве, на грубых кормах, в молочных продуктах. Представители этого рода - про­дуценты пенициллина;

Аспергилл (леечная плесень) имеет многоклеточный мицелий, его часто обнаруживают на сене. Один из видов вызывает аспергиллез животных. Некоторые аспергиллы - продуценты анти­биотиков (фумигаллин, аспергиллин). Фузариум - плесень, ми­целий которой бывает окрашен в разные цвета. Поражает пере­зимовавшие в поле злаковые растения и делает их ядовитыми для человека и животных («пьяный хлеб»). Молочная плесень появляется на поверхности молочных продуктов. Один из видов этой плесени вызывает молочницу - заболевание молодняка жи­вотных, в том числе птиц.

Дрожжи относятся к классу сумчатых грибов - аскомицетов. Это одноклеточные организмы округлой, овальной или уд­линенной формы с двухконтурной оболочкой и ядром. Размно­жаются почкованием или спорообразованием. Большое значение имеют расы дрожжей, вызывающие спиртовое брожение, а также используемые для приготовления кефира. Патогенным для лоша­дей является возбудитель эпизоотического лимфангита.

Несовершенные грибы - группа грибов, имеющих многоклеточный мицелий, размножаются спорами, бесполым путем. Имеют оболочку, цитоплазму, ядро, включения. К ним относятся возбудители дерматомикозов - трихофитии, микро­спории, парши (фавуса).

Лабораторная работа

Техника безопасности при работе с инфекционным материалом и больными животными. Приготовление и исследование мазков из культур бактерий и органов животных

При работе с патологическим материалом и больными живот­ными внимание ветеринарного специалиста должно быть сосре­доточено на двух основных моментах: предупредить заражение людей и не допустить распространения возбудителя инфекции. Существуют инфекционные болезни животных, которыми может заразиться человек (зооантропонозы): сибирская язва, туберку­лез, бруцеллез, туляремия, Ку-лихорадка, лептоспироз, листериоз, мелиоидоз, бешенство, болезнь Ауески, ящур, дерматомикозы (трихофития, микроспория), сап, сальмонеллезы, эктима, чума верблюдов (зооантропонозная чума), рожа свиней, орнитоз. За­ражение человека этими болезнями может произойти при: кли­ническом осмотре животных и оказании им лечебной помощи; вскрытии трупов и взятии патологического материала для лабо­раторного исследования; проведении прививок и диагностичес­ких исследований; работе с патологическим материалом в лабо­ратории; соприкосновении с необеззараженным сырьем живот­ного происхождения (кожа, шерсть и т.п.); переработке мясных и молочных продуктов; употреблении в пищу инфицированных продуктов животного происхождения. В организм человека пато­генные микробы проникают через кожу при нарушении ее це­лости, главным образом рук, а также через слизистые оболочки рта, носовой полости, дыхательных путей, глаз и пищеваритель­ного тракта.

Чтобы предохранить себя и других от заражения инфекцион­ной болезнью и не допустить ее распространения, нужно соблю­дать следующие меры предосторожности:

1) люди, допускаемые к работе с патологическим материалом и больными животными, должны быть тщательно проинструкти­рованы;

2) все работы с больными животными и патологическим ма­териалом выполняют только в защитной одежде, включающей халат (с завязками на спине и рукавах), колпак или косынку, при необходимости - нарукавники, передники, резиновые пер­чатки, резиновые сапоги, очки и защитные марлевые маски. Людей с повреждениями на руках к этой работе, как правило, не допускают. При необходимости разрешают работать только в резиновых перчатках, раны на руках смазывают настойкой йода и затем коллодием. Перед надеванием проверяют целость рези­новых перчаток;

3) оборудование лаборатории и рабочего места должны обес­печивать высокую производительность труда и его безопасность;

4) при работе с патологическим материалом нельзя курить, разговаривать, касаться лица руками, сморкаться, поправлять во­лосы, отвлекаться от работы. Следует избегать лишних передви­жений. В лаборатории запрещается хранить и принимать пищу;

5) руки после работы погружают в сосуд с дезинфицирующей жидкостью (2%-ным раствором фенола) на 1-2 мин, затем тща­тельно моют водой с мылом;

6) использованные в работе пипетки, предметные и покров­ные стекла, куски ваты и т.п. тотчас помещают в сосуд с дезин­фицирующей жидкостью (5%-ный раствор фенола; 3%-ный рас­твор лизола или креолина). Металлические предметы, бывшие в контакте с патологическим материалом, немедленно обеззаражи­вают прокаливанием на пламени. Инструменты (ножницы, скальпели, пинцеты и др.) после употребления кипятят в стери­лизаторе или кладут в закрытый сосуд для последующего автоклавирования. Если патологический материал попал на окружающие предметы, необходимо немедленно провести тщатель­ную дезинфекцию, залив это место дезинфицирующим раство­ром, а затем, если можно, прожечь данное место с помощью тампона, смоченного спиртом;,

7) весь патологический материал (культуры микробов, трупы животных и т.п.), не подлежащий дальнейшему исследованию, обеззараживают (автоклавируют, сжигают). Место работы с этим материалом должно быть тщательно продезинфицировано и очи­щено. Допускается только влажная уборка помещений. Особое внимание уделяют удалению пыли с предметов, находящихся в лаборатории. Для обеззараживания комнат, где работают с пато­логическим материалом, применяют бактерицидные лампы.

Меры против заражения при попадании патологического ма­териала в организм человека: а) при ранениях инфицированным инструментом или при покусе животным не следует торопиться с остановкой кровотечения. Рану нужно прижечь настойкой йода и наложить 40-60%-ную спиртовую повязку; б) при попадании патологического материала в рот его немедленно выплевывают в чашку с дезинфицирующей жидкостью, а рот в течение несколь­ких минут прополаскивают слабым раствором йода (3-5 капель настойки йода на стакан воды) или перманганата калия; в) если патологический материал попал в глаз, его нельзя тереть; следует промыть глаз слабым раствором йода или перманганата калия.

Правила обращения с больными инфекционными болезнями животными. Ветеринарный специалист соприкасается с больны­ми животными во время их исследования (при постановке диа­гноза), при оказании лечебной помощи, убое животных, вскры­тии трупов, проведении противоэпизоотических мероприятий. Любая работа с больными и в особенности с подозрительными по заболеванию заразными болезнями животными проводится только в защитной одежде.

Исследование больного животного слагается из предвари­тельного ознакомления, включающего регистрацию его, изучение документов и сбор анамнестических, в том числе эпизоотологических, данных, и собственно исследования, которое, в свою очередь, делится на общее исследование (внешний осмотр, исследование кожного покрова и видимых слизистых оболочек и лимфатических узлов, термометрия) и специальное исследование (исследование отдельных систем и органов). При необходимости берут кровь и другие материалы для лабораторно­го исследования. При исследовании больных и подозрительных по заболеванию животных необходимы чрезвычайная осторож­ность и продуманность действий. Прежде чем вплотную присту­пить к этому, надо собрать по возможности полный анамнез, провести предварительное наблюдение за животным и беглый клинический осмотр. Например, если кажется, что собака пода­вилась костью, прежде чем исследовать глотку, надо тщательно расспросить хозяина о поведении животного в последние дни, характере кормления, о возможных контактах с другими живот­ными, особенно собаками, выяснить, нет ли подобных призна­ков у собак или кошек, принадлежащих соседям. И только после всего этого, соблюдая все меры предосторожности, можно начи­нать исследовать животное (возможно бешенство!).

Осторожность нужно соблюдать и при оказании больным жи­вотным лечебной помощи (при отделении последа или родовспо­можении можно заразиться бруцеллезом; ошибочное вскрытие сибиреязвенного карбункула повлечет за собой рассеивание воз­будителя болезни и возможность заражения человека). Место, где проводилась работа с больным животным, дезинфицируют.

Изготовление мазков. Мазки из культур микробов и мазки-от­печатки из органов трупа готовят на чистых обезжиренных пред­метных стеклах. Непосредственно перед приготовлением мазка предметное стекло несколько раз проводят через пламя горелки. При изготовлении мазка из культуры микробов надо предохра­нить ее от загрязнения микробами из окружающей среды и не допустить инфицирования этой культурой окружающих предме­тов. Материал из пробирки с культурой берут прокаленной на пламени горелки бактериологической (платиновой) петлей или стерильной пастеровской пипеткой. Тонкий конец пипетки после прокаливания на пламени сгибают под прямым углом. Открывают пробирку над пламенем, вынимают пробку и откры­тый конец пробирки также обжигают на пламени. Петлю прожи­гают еще раз и, остудив, вводят в пробирку, не касаясь ее краев, захватывают каплю культуры. При пользовании пипеткой тонкий конец ее обламывают и насасывают культуру, пользуясь при этом резиновой грушей (а не ртом). Пробирку в этот момент держат чуть в стороне от пламени горелки. Затем закрывают пробирку над пламенем пробкой, также проведенной через пламя горелки. Взятый материал наносят на предметное стекло и размазывают тонким слоем, петлю прокаливают и ставят в шта­тив, пипетку - в сосуд с дезраствором.

При изготовлении мазков из агаровых культур на предметное стекло предварительно наносят каплю стерильного физиологи­ческого раствора или бульона.

При изготовлении мазков-отпечатков из органов участок ор­гана, откуда предполагается сделать отпечаток, прижигают шпа­телем или обжигают на пламени. Стерильными ножницами вы­резают небольшой кусочек исследуемого органа и, захватив его пинцетом, прижимают поверхностью разреза к "предметному стеклу, делая таким образом несколько отпечатков.

Мазки с обратной стороны специальным карандашом по стеклу обводят и надписывают, указывая при этом номер или кличку животного и дату изготовления мазка. Приготовленные тем или иным способом мазки высушивают на воздухе и фикси­руют физическим (3-4-кратным проведением над пламенем го­релки) или химическим (спирт-ректификат в течение 15-20 мин; смесь спирта с эфиром поровну - 10-15; метиловый спирт - 5 мин; хлороформ - несколько секунд) способом.

Окраска мазков. Ее проводят простым или сложными спосо­бами.

Простой способ: на фиксированный мазок наливают несколько капель раствора карболового фуксина Циля в разведе­нии 1:10 или метиленовой синьки Леффлера. Затем краску смы­вают дистиллированной водой, мазок высушивают фильтроваль­ной бумагой.

Сложные способы. Окраска по Грому: на фиксирован­ный мазок кладут кусочек фильтровальной бумаги и на него наливают раствор генцианвиолета. Через 2 мин бумагу удаляют, раствор сливают, на препарат наливают люголевский раствор. Спустя 1 мин его сливают и препарат в течение 30 с обрабаты­вают спиртом-ректификатом, затем промывают водой и окраши­вают спирто-водным фуксином (для этого карболовый фуксин разводят 1:10 водой) в течение 2 мин. После этого препарат промывают водой и рассматривают под микроскопом.

Можно использовать заранее приготовленные и высушенные бумажки, пропитанные 1%-ным спиртовым раствором генциан­виолета. Их кладут на фиксированный мазок и смачивают водой; в остальном техника окраски та же.

Микрокартина: грамположительные микробы темно-фиолето­вые, грамотрицательные - розовые.

Окраска по Цилю - Нильсену. Применяют при микроскопи­ческой диагностике туберкулеза и паратуберкулеза. Фиксирован­ный на пламени мазок покрывают фильтровальной бумажкой, наливают на нее карболовый фуксин и подогревают до появле­ния паров, после чего нагревание прекращают и оставляют крас­ку на препарате 2-3 мин. Затем пинцетом удаляют бумажку и промывают мазок водой. После этого обесцвечивают препарат 5%-ным водным раствором серной кислоты в течение 3-5 с, тщательно промывают водой и в течение 10-15 с обрабатывают спиртом. Снова промывают водой и докрашивают в течение 3-5 мин метиленовой синькой Леффлера. Краску смывают водой, препарат высушивают.

Микрокартина: спирто-кислотоустойчивые микробы красные, остальные - синие (см. цв. табл. I).

Окраску по Козловскому применяют для микроскопической диагностики бруцеллеза. Фиксированный на пламени мазок ок­рашивают 2%-ным раствором сафранина (раствор готовят непо­средственно перед употреблением) с интенсивным подогревани­ем (до появления паров). Промывают водой и окрашивают 1%-ным водным раствором малахитовой зелени в течение 1 мин. Затем промывают водой и высушивают.

Микрокартина: бруцеллы красные, остальные микробы зеле­ные (см. цв. табл. 1).

Окраска капсул применяется при микроскопической диагностике сибирской язвы.

Способ Михина. Фиксированный мазок при подогревании ок­рашивают метиленовой синькой Леффлера в течение 2-3 мин до появления паров. Краску быстро смывают водой, мазок высу­шивают.

Микрокартина: капсулы светло-розовые, бациллы темно-синие.

Окраска спор. Способ Пешкова. Фиксированный мазок окрашивают кипящей метиленовой синькой Леффлера в течение 20 с. После охлаждения мазок промывают водой и докрашивают 0,5%-ным водным раствором нейтральрота в течение 30 с, затем промывают водой и высушивают.

Микрокартина: споры синие, микробные тела розовые, ядра фиолетовые.

Контрольные вопросы. 1. Каковы основные группы микроорганизмов? 2. На каких принципах основана классификация микроорганизмов? 3. Из каких струк­тур состоят бактерии? 4. В чем состоят меры личной профилактики при работе с патологическим материалом, культурами микроорганизмов и животными, боль­ными инфекционными болезнями? 5. Как приготовить и окрасить мазки из культур микробов, из патологического материала?


Похожая информация.