Из каких химических элементов состоят нуклеиновые кислоты. Нуклеиновые кислоты

В живом организме присутствуют три основные макромолекулы: белки и нуклеиновые кислоты двух видов. Благодаря им поддерживается жизнедеятельность и правильное функционирование всего организма. Что такое нуклеиновые кислоты? Для чего они необходимы? Об этом - далее в статье.

Общая информация

Нуклеиновая кислота - это биополимер, органическое соединение с высокой молекулярностью, которое образовано остатками нуклеотидов. Передача от поколения к поколению всей генетической информации - главная задача, которую выполняют нуклеиновые кислоты. Презентация, которая представлена ниже, раскроет данное понятие более подробно.

История исследования

Первый изученный нуклеотид был выделен из мышц быка в 1847-м году и назван «инозиновая кислота». В результате изучения химического строения было выявлено, что она является рибозид-5′-фосфатом и хранит в себе N-гликозидную связь.В 1868-м году было обнаружено вещество под названием «нуклеин». Открыл его швейцарский химик Фридрих Мишер во время исследований некоторых биологических субстанций. В состав этого вещества входил фосфор. Соединение обладало кислотными свойствами и не подвергалось разложению под влиянием протеолитических ферментов.

Вещество получило формулу C29H49N9O22P3.Предположение об участии нуклеина в процессе передачи наследственной информации было выдвинуто в результате обнаружения аналогичности его химического состава с хроматином. Этот элемент является основным компонентом хромосом.Термин «нуклеиновая кислота» впервые был введен в 1889-м году Рихардом Альтманом. Именно он стал автором способа получения этих веществ без белковых примесей.В ходе исследования щелочного гидролиза нуклеиновых кислот Левин и Жакоб выявили основные компоненты продуктов этого процесса. Ими оказались нуклеотиды и нуклеозиды. В 1921-м году Левин предположил, что ДНК имеет тетрануклеотидное строение. Однако эта гипотеза не нашла подтверждения и оказалась ошибочной.

В результате этого появилась новая возможность изучения строения соединений.В 1940-м году Александер Тодд вместе со своей научной группой начинает широкомасштабное изучение химических свойств, строения нуклеотидов и нуклеозидов, в результате чего в 1957-м году был награжден Нобелевской премией.А американский биохимик Эрвин Чаргафф определил, что нуклеиновые кислоты содержат разные типы нуклеотидов в определенной закономерности. В дальнейшем это явление получило название «Правило Чаргаффа».

Классификация

Нуклеиновые кислоты бывают двух видов: ДНК и РНК. Их присутствие обнаруживается в клетках всех живых организмов. ДНК в основном содержится в ядре клетки. РНК находится в цитоплазме. В 1935 году, в ходе мягкого фрагментирования ДНК, были получены 4 ДНК-образующих нуклеотида. Эти компоненты представлены в состоянии кристаллов. В 1953 году Уотстон и Крик определили, что у ДНК существует двойная спираль.

Методы выделения

Разработаны различные способы получения соединений из естественных источников. Главными условиями этих методик являются результативное разделение нуклеиновых кислот и белков, наименьшая фрагментация веществ, полученных в ходе процесса. На сегодняшний день широко используется классический способ. Суть этого метода заключается в разрушении стенок биологического материала и дальнейшей их обработке анионным детергентом. В результате получается осадок из белка, а нуклеиновые кислоты остаются в растворе. Используется и другой метод. В этом случае нуклеиновые кислоты могут оседать в гелевом состоянии с помощью использования этанола и солевого раствора. При этом следует соблюдать определенную осторожность. В частности, добавлять этанол нужно с большой аккуратностью в солевой раствор для получения гелевого осадка. В какой концентрации выделилась нуклеиновая кислота, какие примеси в ней присутствуют, можно определить спектрофотометрическим методом. Нуклеиновые кислоты с легкостью подвергаются деградации с помощью нуклеазы, представляющей особый класс ферментов. При таком выделении необходимо, чтобы лабораторное оборудование прошло обязательную обработку ингибиторами. К ним относится, например, ингибитор DEPC, который применяется при выделении РНК.

Физические свойства

Нуклеиновые кислоты обладают хорошей растворимостью в воде, а в органических соединениях почти не растворяются. Кроме того, они особо восприимчивы к показателям температуры и уровня рН. Молекулы нуклеиновых кислот, обладающие высокой молекулярной массой, могут фрагментироваться нуклеазой под влиянием механических сил. К таковым относятся перемешивание раствора, его взбалтывание.

Нуклеиновые кислоты. Строение и функции

В клетках встречаются полимерные и мономерные формы рассматриваемых соединений. Полимерные формы называются полинуклеотидами. В таком виде цепочки нуклеотидов связываются остатком фосфорной кислоты. Из-за содержания двух видов гетероциклических молекул, называемых рибозой и дезоксорибозой, кислоты, соответственно, бывают рибонуклеиновые и дезоксирибонуклеиновые. С их помощью происходит хранение, передача и реализация наследственной информации. Из мономерных форм нуклеиновых кислот наиболее популярная аденозинтрифосфорная кислота. Она участвует в передаче сигналов и обеспечении запасов энергии в клетке.

ДНК

Дезоксирибонуклеиновая кислота является макромолекулой. С ее помощью происходит процесс передачи и реализации генетической информации. Эти сведения необходимы для программы развития и функционирования живого организма. У животных, растений, грибов ДНК входит в состав хромосом, находящихся в ядре клетки, а также находится в митохондриях и пластидах. У бактерий и архей молекула дезоксирибонуклеиновой кислоты цепляется за клеточную мембрану с внутренней стороны. В таких организмах присутствуют в основном кольцевые молекулы ДНК. Они получили название "плазмиды". По химическому строению дезоксирибонуклеиновая кислота представляет собой полимерную молекулу, состоящую из нуклеотидов. Эти компоненты, в свою очередь, имеют в своем составе азотистое основание, сахар и фосфатную группу. Именно за счет двух последних элементов образуется связь между нуклеотидами, создавая цепи. В основном макромолекула ДНК представлена в виде спирали из двух цепей.

РНК

Рибонуклеиновая кислота представляет собой длинную цепь, состоящую из нуклеотидов. В их составе присутствуют азотистое основание, сахар рибозы и фосфатная группа. Генетическая информация кодируется с помощью последовательности нуклеотидов. РНК используется для программирования синтеза белков. Рибонуклеиновая кислота создается в ходе транскрипции. Это процесс синтеза РНК на матрице ДНК. Он происходит при участии специальных ферментов. Называются они РНК-полимеразами. После этого матричные рибонуклеиновые кислоты участвуют в процессе трансляции. Так происходит осуществление синтеза белка на матрице РНК. Активное участие в этом процессе принимают рибосомы. Остальные РНК в завершение транскрипции проходят химические преобразования. В результате происходящих изменений образуются вторичная и третичная структуры рибонуклеиновой кислоты. Они функционируют в зависимости от типа РНК.

В живом организме присутствуют три основные макромолекулы: белки и нуклеиновые кислоты двух видов. Благодаря им поддерживается жизнедеятельность и правильное функционирование всего организма. Что такое нуклеиновые кислоты? Для чего они необходимы? Об этом - далее в статье.

Общая информация

Нуклеиновая кислота - это биополимер, органическое соединение с высокой молекулярностью, которое образовано остатками нуклеотидов. Передача от поколения к поколению всей генетической информации - главная задача, которую выполняют нуклеиновые кислоты. Презентация, которая представлена ниже, раскроет данное понятие более подробно.

История исследования

Первый изученный нуклеотид был выделен из мышц быка в 1847-м году и назван «инозиновая кислота». В результате изучения химического строения было выявлено, что она является рибозид-5′-фосфатом и хранит в себе N-гликозидную связь.В 1868-м году было обнаружено вещество под названием «нуклеин». Открыл его швейцарский химик Фридрих Мишер во время исследований некоторых биологических субстанций. В состав этого вещества входил фосфор. Соединение обладало кислотными свойствами и не подвергалось разложению под влиянием протеолитических ферментов.

Вещество получило формулу C29H49N9O22P3.Предположение об участии нуклеина в процессе передачи наследственной информации было выдвинуто в результате обнаружения аналогичности его химического состава с хроматином. Этот элемент является основным компонентом хромосом.Термин «нуклеиновая кислота» впервые был введен в 1889-м году Рихардом Альтманом. Именно он стал автором способа получения этих веществ без белковых примесей.В ходе исследования щелочного гидролиза нуклеиновых кислот Левин и Жакоб выявили основные компоненты продуктов этого процесса. Ими оказались нуклеотиды и нуклеозиды. В 1921-м году Левин предположил, что ДНК имеет тетрануклеотидное строение. Однако эта гипотеза не нашла подтверждения и оказалась ошибочной.

В результате этого появилась новая возможность изучения строения соединений.В 1940-м году Александер Тодд вместе со своей научной группой начинает широкомасштабное изучение химических свойств, строения нуклеотидов и нуклеозидов, в результате чего в 1957-м году был награжден Нобелевской премией.А американский биохимик Эрвин Чаргафф определил, что нуклеиновые кислоты содержат разные типы нуклеотидов в определенной закономерности. В дальнейшем это явление получило название «Правило Чаргаффа».

Классификация

Нуклеиновые кислоты бывают двух видов: ДНК и РНК. Их присутствие обнаруживается в клетках всех живых организмов. ДНК в основном содержится в ядре клетки. РНК находится в цитоплазме. В 1935 году, в ходе мягкого фрагментирования ДНК, были получены 4 ДНК-образующих нуклеотида. Эти компоненты представлены в состоянии кристаллов. В 1953 году Уотстон и Крик определили, что у ДНК существует двойная спираль.

Методы выделения

Разработаны различные способы получения соединений из естественных источников. Главными условиями этих методик являются результативное разделение нуклеиновых кислот и белков, наименьшая фрагментация веществ, полученных в ходе процесса. На сегодняшний день широко используется классический способ. Суть этого метода заключается в разрушении стенок биологического материала и дальнейшей их обработке анионным детергентом. В результате получается осадок из белка, а нуклеиновые кислоты остаются в растворе. Используется и другой метод. В этом случае нуклеиновые кислоты могут оседать в гелевом состоянии с помощью использования этанола и солевого раствора. При этом следует соблюдать определенную осторожность. В частности, добавлять этанол нужно с большой аккуратностью в солевой раствор для получения гелевого осадка. В какой концентрации выделилась нуклеиновая кислота, какие примеси в ней присутствуют, можно определить спектрофотометрическим методом. Нуклеиновые кислоты с легкостью подвергаются деградации с помощью нуклеазы, представляющей особый класс ферментов. При таком выделении необходимо, чтобы лабораторное оборудование прошло обязательную обработку ингибиторами. К ним относится, например, ингибитор DEPC, который применяется при выделении РНК.

Физические свойства

Нуклеиновые кислоты обладают хорошей растворимостью в воде, а в органических соединениях почти не растворяются. Кроме того, они особо восприимчивы к показателям температуры и уровня рН. Молекулы нуклеиновых кислот, обладающие высокой молекулярной массой, могут фрагментироваться нуклеазой под влиянием механических сил. К таковым относятся перемешивание раствора, его взбалтывание.

Нуклеиновые кислоты. Строение и функции

В клетках встречаются полимерные и мономерные формы рассматриваемых соединений. Полимерные формы называются полинуклеотидами. В таком виде цепочки нуклеотидов связываются остатком фосфорной кислоты. Из-за содержания двух видов гетероциклических молекул, называемых рибозой и дезоксорибозой, кислоты, соответственно, бывают рибонуклеиновые и дезоксирибонуклеиновые. С их помощью происходит хранение, передача и реализация наследственной информации. Из мономерных форм нуклеиновых кислот наиболее популярная аденозинтрифосфорная кислота. Она участвует в передаче сигналов и обеспечении запасов энергии в клетке.

ДНК

Дезоксирибонуклеиновая кислота является макромолекулой. С ее помощью происходит процесс передачи и реализации генетической информации. Эти сведения необходимы для программы развития и функционирования живого организма. У животных, растений, грибов ДНК входит в состав хромосом, находящихся в ядре клетки, а также находится в митохондриях и пластидах. У бактерий и архей молекула дезоксирибонуклеиновой кислоты цепляется за клеточную мембрану с внутренней стороны. В таких организмах присутствуют в основном кольцевые молекулы ДНК. Они получили название "плазмиды". По химическому строению дезоксирибонуклеиновая кислота представляет собой полимерную молекулу, состоящую из нуклеотидов. Эти компоненты, в свою очередь, имеют в своем составе азотистое основание, сахар и фосфатную группу. Именно за счет двух последних элементов образуется связь между нуклеотидами, создавая цепи. В основном макромолекула ДНК представлена в виде спирали из двух цепей.

РНК

Рибонуклеиновая кислота представляет собой длинную цепь, состоящую из нуклеотидов. В их составе присутствуют азотистое основание, сахар рибозы и фосфатная группа. Генетическая информация кодируется с помощью последовательности нуклеотидов. РНК используется для программирования синтеза белков. Рибонуклеиновая кислота создается в ходе транскрипции. Это процесс синтеза РНК на матрице ДНК. Он происходит при участии специальных ферментов. Называются они РНК-полимеразами. После этого матричные рибонуклеиновые кислоты участвуют в процессе трансляции. Так происходит осуществление синтеза белка на матрице РНК. Активное участие в этом процессе принимают рибосомы. Остальные РНК в завершение транскрипции проходят химические преобразования. В результате происходящих изменений образуются вторичная и третичная структуры рибонуклеиновой кислоты. Они функционируют в зависимости от типа РНК.

Макромолекулярная структура ДНК

Выделение дезоксирибонуклеиновых кислот

Выделение рибонуклеиновых кислот

Природа межнуклеотидных связей

  1. Межнуклеотидная связь в ДНК

    Межнуклеотидная связь в РНК

    Значение нуклеиновых кислот

    Список литературы

1. Состав нуклеиновых кислот

Нуклеиновые кислоты - это биополимеры, макромолекулы которых состоят из многократно повторяющихся звеньев - нуклеотидов. Поэтому их называют также полинуклеотидами. Важнейшей характеристикой нуклеиновых кислот является их нуклеотидный состав. В состав нуклеотида - структурного звена нуклеиновых кислот - входят три составные части:

    азотистое основание - пиримидиновое или пуриновое. В нуклеиновых кислотах содержатся основания 4-х разных видов: два из них относятся к классу пуринов и два – к классу пиримидинов. Азот, содержащийся в кольцах, придает молекулам основные свойства.

    моносахарид - рибоза или 2-дезоксирибоза. Сахар, входящий в состав нуклеотида, содержит пять углеродных атомов, т.е. представляет собой пентозу. В зависимости от вида пентозы, присутствующей в нуклеотиде, различают два вида нуклеиновых кислот – рибонуклеиновые кислоты (РНК), которые содержат рибозу, и дезоксирибонуклеиновые кислоты (ДНК), содержащие дизоксирибозу.

    остаток фосфорной кислоты. Нуклеиновые кислоты являются кислотами потому, что в их молекулах содержится фосфорная кислота.

Нуклеотид - фосфорный эфир нуклеозида. В состав нуклеозида входят два компонента: моносахарид (рибоза или дезоксирибоза) и азотистое основание.

В конце 40-х - начале 50-х годов, когда появились такие методы исследования, как хроматография на бумаге и УФ-спектроскопия, были проведены многочисленные исследования нуклеотидного состава НК (Чаргафф, А. Н. Белозерский). Полученные данные позволили решительно отбросить старые представления о нуклеиновых кислотах, как о полимерах, содержащих повторяющиеся тетрануклеотидные последовательности (так называемая тстрануклеотидная теория строения ПК. господствовавшая в 30-40-е годы), и подготовили почву для создания современных представлений не только о первичной структуре ДНК и РНК, но и об их макромолекулярной структуре и функциях.

Метод определения состава ПК основан на анализе гндролизатов, образующихся при их ферментативном или химическом расщеплении. Обычно используются три способа химического расщепления НК. Кислотный гидролиз в жестких условиях (70%-ная хлорная кислота, 100°С, 1 ч или 100%-ная муравьиная кислота, 175 °C, 2 ч), применяемый для анализа как ДНК, так и РНК, приводит к разрыву всех N-гликозидных связей и образованию смеси пуриновых и пиримидиновых оснований. При исследовании РНК могут использоваться как мягкий кислотный гидролиз (1 н. соляная кислота, lOO°C, 1 ч), в результате которого образуются пуриновые основания и пирамидиповые нуклеозид-2"(3")-фосфаты, так и щелочной гидролиз (0,3 н. едкий кали, 37 °С, 20 ч), дающий смесь нуклеозид -2" (3") -фосфатов.

Поскольку в НК число нуклеотидов каждого вида равно числу соответствующих оснований, для установления нуклеотидного состава данной НК достаточно определить количественное соотношение оснований. Для этой цели из гидролизатов с помощью хроматографии на бумаге или электрофореза (когда в результате гидролиза получают нуклеотиды) выделяют индивидуальные соединения. Каждое основание независимо от того, связано оно с углеводным фрагментом или нет, обладает характерным максимумом поглощения в УФ, интенсивность которого зависит от концентрации. По этой причине, исходя из УФ-спектров выделенных соединений, можно определить количественное соотношение оснований, а следовательно, и нуклеотидный состав исходной НК.

При количественном определении минорных нуклеотидов, особенно таких неустойчивых, как дигидроуридиловая кислота, пользуются ферментативными методами гидролиза (ФДЭ змеиного яда и селезенки).

Использование описанных выше аналитических приемов показало, что ПК различного происхождения состоят за редким исключением из четырех основных нуклеотидов и что содержание минорных нуклеотидов может меняться в значительных пределах.

Из двух типов нуклеиновых кислот - ДНК и РНК - дезоксирибонуклеиновая кислота выполняет роль вещества, в котором закодирована вся основная наследственная информация клетки, и которое способно к самовоспроизведению, а рибонуклеиновые кислоты выполняют роль посредников между ДНК и белком. Такие функции нуклеиновых кислот тесно связаны с обенностями их индивидуальной структуры.

ДНК и РНК - это полимерные макромолекулы, мономерами которых служат нуклеотиды . Каждый нуклеотид сформирован из трех частей - моносахарида, остатка фосфорной кислоты и азотистого основания. Азотистое основание соединено с сахаром b-N-гликозидной связью (рис. 1.1).

Сахар, входящий в состав нуклеотида (пентоза), может присутствовать в одной из двух форм: b-D-рибозы и b-D-2-дезоксирибозы. Различие между ними состоит в том, что гидроксил рибозы при 2’-углеродном атоме пентозы замещен в дезоксирибозе на атом водорода. Нуклеотиды, содержащие рибозу, называются рибонуклеотидами и являются мономерами РНК, а нуклеотиды, содержащие дезоксирибозу, носят название дезоксирибонуклеотиды и формируют ДНК.

Азотистые основания являются производными одного из двух соединений - пурина или пиримидина . В нуклеиновых кислотах преобладают два пуриновых основания - аденин (А) и гуанин (G) и три пиримидиновых - цитозин (С), тимин (Т) и урацил (U). В рибонуклеотидах и соответственно в РНК присутствуют основания А, G, С, U, а в дезоксирибонуклеотидах и в ДНК - А, G, С, Т.

Рис. 1.1. Структура нуклеозида и нуклеотида: цифрами обозначено по-

ложение атомов в остатке пентозы

Номенклатура нуклеозидов и нуклеотидов широко используется в биохимии и молекулярной биологии и представлена в табл. 1.1.

Таблица 1.1. Номенклатура нуклеотидов и нуклеозидов

Длинные полинуклеотидные цепочки ДНК и РНК образуются при соединении нуклеотидов между собой с помощью фосфодиэфирных мостиков. Каждый фосфат соединяет гидроксил при 3’-углеродном атоме пентозы одного нуклеотида с ОН-группой при 5’-углеродном атоме пентозы соседнего нуклеотида (рис. 1.2).

При кислотном гидролизе нуклеиновых кислот образуются отдельные компоненты нуклеотидов, а при ферментативном гидролизе с помощью нуклеаз расщепляются определенные связи в составе фосфодиэфирного мостика и при этом обнажаются 3’- и 5’-концы молекулы (рис. 1.2).

Это дает основание считать цепочку нуклеиновой кислоты полярной, и появляется возможность определять направление чтения последовательности нуклеотидов в ней. Следует отметить, что большинство ферментов, участвующих в синтезе и гидролизе нуклеиновых кислот, работают в направлении от 5’- к 3’-концу (5’ → 3’) цепочки нуклеиновой кислоты. Согласно принятому соглашению, последовательность нуклеотидов в цепочках нуклеиновых кислот тоже читается в направлении 5’ → 3’ (рис. 1.2).

Особенности строения ДНК. Согласно трехмерной модели, предложенной Уотсоном и Криком в 1953 г., молекула ДНК состоит из двух полинуклеотидных цепей, которые образуют правую спираль относительно одной и той же оси. Направление цепей в молекуле взаимно противоположное, она имеет почти постоянный диаметр и другие параметры, которые не зависят от нуклеотидного состава, в отличие от белков, у которых последовательность аминокислотных остатков определяет вторичную и третичную структуру молекулы.

Сахарофосфатный остов располагается по периферии спирали, а азотистые основания находятся внутри, и их плоскости перпендикулярны оси спирали. Между основаниями, расположенными друг напротив друга в противоположных цепях, формируются специфические водородные связи: аденин всегда связывается с тимином, а гуанин с цитозином. Причем в АТ-паре основания соединены двумя водородными связями: одна из них образуется между амино- и кетогруппами, а другая - между двумя атомами азота пурина и пиримидина соответственно. В GС-паре имеется три водородные связи: две из них образуются между амино- и кето-группами соответствующих оснований, а третья - между атомом азота пиримидина и водородом (заместителем у атома азота) пурина.

Таким образом, более объемные пурины всегда спариваются с пиримидинами, имеющими меньшие размеры. Это приводит к тому, что расстояния между С1’-атомами дезоксирибозы в двух цепях оказываются одинаковыми для АТ- и GС-пар и равными 1,085 нм. Два указанных типа пар нуклеотидов, АТ и GС, называют комплементарными парами. Образование пар между двумя пуринами, двумя пиримидинами или некомплементарными основаниями (А+С или G+Т) стерически затруднено, поскольку при этом не могут образовываться подходящие водородные связи и, следовательно, нарушается геометрия спирали.

Геометрия двойной спирали такова, что соседние нуклеотиды в цепи находятся друг от друга на расстоянии 0,34 нм. На один виток спирали приходится 10 пар нуклеотидов, и шаг спирали равен 3,4 нм (10 * 0,34 нм). Диаметр двойной спирали равен примерно 2,0 нм. В связи с тем, что сахарофосфатный остов расположен дальше от оси спирали, чем азотистые основания, в двойной спирали имеются желобки -большой и малый (рис. 1.3).

Молекула ДНК способна принимать различные конформации. Обнаружены А-, В- и Z-формы. В-ДНК - это обычная форма, в которой ДНК находится в клетке, в ней плоскости колец оснований перпендикулярны оси двойной спирали. В А-форме ДНК плоскости пар оснований повернуты примерно на 20° от нормали к оси правой двойной спирали. Z-форма ДНК - это левая спираль с 12 парами нуклеотидов на виток. Биологические функции А- и Z- форм ДНК до конца не выяснены.

Стабильность двойной спирали обусловлена водородными связями между комплементарными нуклеотидами в антипараллельных цепях, стэкинг-взаимодействием (межплоскостные вандерваальсовы контакты между атомами и перекрывание p-орбиталей атомов контактирующих оснований), а также гидрофобными взаимодействиями. Последние выражаются в том, что неполярные азотистые основания обращены внутрь спирали и защищены от непосредственного контакта с полярным растворителем, и наоборот, заряженные сахарафосфатные группы обращены наружу и контактируют с растворителем.

Поскольку две цепи ДНК связаны между собой только нековалентными связями, молекула ДНК легко распадается на отдельные цепочки при нагревании или в щелочных растворах (денатурация ). Однако при медленном охлаждении (отжиг ) цепи способны вновь ассоциировать, и между комплементарными основаниями восстанавливаются водородные связи (ренатурация ). Эти свойства ДНК имеют большое значение для методологии генетической инженерии (глава 20).

Размер молекул ДНК выражают в числе пар нуклеотидов, при этом за единицу принимается тысяча пар нуклеотидов (т. п. н.) или 1 килобаза (кб). Молекулярная масса одной т. п. н. В-формы ДНК составляет ~ 6,6*10 5 Да, а ее длина составляет 340 нм. Полный геном Е.coli (~ 4*10 6 п. н.) представлен одной кольцевой молекулой ДНК (нуклеоид) и имеет длину 1,4 мм.

Особенности строения и функции РНК . Молекулы РНК представляют собой полинуклеотиды, состоящие из одной цепи, включающей 70- 10000 нуклеотидов (иногда и больше), представленные следующими типами: мРНК (матричная или информационная), тРНК (транспортная), рРНК (рибосомная) и только в клетках эукариот - гяРНК (гетерогенная ядерная), а также мяРНК (малые ядерные). Перечисленные виды РНК выполняют специфические функции, кроме того, в некоторых вирусных частицах РНК является носителем генетической информации.

Матричная РНК является транскриптом определенного фрагмента смысловой цепи ДНК и синтезируется в ходе транскрипции . мРНК - это программа (матрица), по которой строится полипептидная молекула. Каждые три последовательно расположенных нуклеотида в мРНК выполняют функцию кодона , определяя положение соответствующей аминокислоты в пептиде. Таким образом, мРНК служит посредником между ДНК и белком.

Транспортная РНК также участвует в процессе синтеза белка. Ее функция состоит в доставке аминокислот к месту синтеза и определении положения аминокислоты в пептиде. Для этого в составе тРНК имеется специфический триплет нуклеотидов, носящий название «антикодон», и вся молекула характеризуется уникальным строением. Структурное представление о молекуле тРНК носит название «клеверный лист» (рис. 1.4).

Молекула тРНК - короткая и состоит из 74-90 нуклеотидов. Как и любая цепь нуклеиновой кислоты, она имеет 2 конца: фосфорилированный 5’-конец и 3’-конец, на котором всегда присутствуют 3 нуклеотида -ССА и концевая 3’ОН-группа. К 3’-концу тРНК прикрепляется аминокислота, и он называется акцепторным. В составе тРНК обнаружено несколько необычным образом модифицированных нуклеотидов, не встречающихся в других нуклеиновых кислотах.

Несмотря на то, что молекула тРНК одноцепочечная, в ней присутствуют отдельные дуплексные участки, формирующие т. н. стебли или ветви, где между асимметричными участками цепи образуются Уотсон-Криковские пары (рис. 1.4). Все известные тРНК формируют «клеверный лист» с четырьмя стеблями (акцепторным, D, антикодоновым и Т). Стебли имеют форму правой двойной спирали, известной как А-форма ДНК. Петли тРНК представляют собой одноцепочечные участки. Некоторые тРНК имеют дополнительные петли и/или стебли (например, вариабельная петля дрожжевой фенилаланиновой тРНК).

Узнавание молекулой тРНК соответствующего сайта в мРНК осуществляется с помощью антикодона, расположенного в антикодоновой петле рис. 1.4). При этом образуются водородные связи между основаниями кодона и антикодона, при условии, что формирующие их последовательности комплементарны, а полинуклеотидные цепи антипараллельны (рис. 1.5).

Молекулы разных тРНК отличаются друг от друга последовательностью нуклеотидов, однако их третичная структура очень сходна. Молекула имеет такой характер укладки, что напоминает по форме букву Г. Акцепторный и Т-стебли уложены в пространстве особым образом и образуют одну непрерывную спираль - «перекладину» буквы Г; антикодоновый и D-стебли образуют «ножку». Правильная укладка молекул тРНК в пространстве имеет большое значение для их функционирования.

В количественном отношении в клетке преобладает рибосомная РНК, однако ее разнообразие по сравнению с другими типами РНК -наименьшее: на долю рРНК приходится до 80 % массы клеточных РНК, и она представлена тремя-четырьмя видами. В то же время, масса почти 100 видов тРНК составляет около 15 %, а доля нескольких тысяч различных мРНК - менее 5 % массы клеточной РНК.

В клетках E.coli обнаружено 3 типа рРНК: 5 S, 16 S и 23 S, а в эукариотических клетках функционируют 18 S-, 5,8 S-, 28 S- и 5 S-рРНК. Эти виды рРНК входят в состав рибосом и составляют примерно 65 % их массы. В составе рибосом рРНК плотно упакованы, способны складываться с образованием стеблей со спаренными основаниями, подобными таковым в тРНК. Считается, что рРНК принимают участие в связывании рибосомы с тРНК. Показано, в частности, что 5 S-рРНК взаимодействует с Т-плечом тРНК.

Кроме перечисленных типов РНК, у эукариот в ядрах обнаружены гетерогенные ядерные РНК и малые ядерные РНК. На долю гяРНК приходится менее 2 % от общего количества клеточной РНК. Эти молекулы способны к быстрым превращениям - для большинства из них время полужизни не превышает 10 мин. Одной из немногих выявленных функций гяРНК является ее роль в качестве предшественника мРНК. мяРНК

ассоциированы с рядом белков и формируют так называемые малые ядерные рибонуклеопротеидные частицы (мяРНП), осуществляющие сплайсинг РНК (глава 3).

НУКЛЕИНОВЫЕ КИСЛОТЫ
биополимеры, состоящие из остатков фосфорной кислоты, сахаров и азотистых оснований (пуринов и пиримидинов). Имеют фундаментальное биологическое значение, поскольку содержат в закодированном виде всю генетическую информацию любого живого организма, от человека до бактерий и вирусов, передаваемую от одного поколения другому. Нуклеиновые кислоты были впервые выделены из клеток гноя человека и спермы лосося швейцарским врачом и биохимиком Ф.Мишером между 1869 и 1871. Впоследствии было установлено, что существует два типа нуклеиновых кислот: рибонуклеиновая (РНК) и дезоксирибонуклеиновая (ДНК), однако их функции долго оставались неизвестными. В 1928 английский бактериолог Ф. Гриффит обнаружил, что убитые патогенные пневмококки могут изменять генетические свойства живых непатогенных пневмококков, превращая последние в патогенные. В 1945 микробиолог О.Эвери из Рокфеллеровского института в Нью-Йорке сделал важное открытие: он показал, что способность к генетической трансформации обусловлена переносом ДНК из одной клетки в другую, а следовательно, генетический материал представляет собой ДНК. В 1940-1950 Дж. Бидл и Э. Тейтум из Станфордского университета (шт. Калифорния) обнаружили, что синтез белков, в частности ферментов, контролируется специфическими генами. В 1942 Т.Касперсон в Швеции и Ж.Браше в Бельгии открыли, что нуклеиновых кислот особенно много в клетках, активно синтезирующих белки. Все эти данные наводили на мысль, что генетический материал - это нуклеиновая кислота и что она как-то участвует в синтезе белков. Однако в то время многие полагали, что молекулы нуклеиновых кислот, несмотря на их большую длину, имеют слишком простую периодически повторяющуюся структуру, чтобы нести достаточно информации и служить генетическим материалом. Но в конце 1940-х годов Э. Чаргафф в США и Дж. Уайатт в Канаде, используя метод распределительной хроматографии на бумаге, показали, что структура ДНК не столь проста и эта молекула может служить носителем генетической информации.

Структура ДНК была установлена в 1953 М. Уилкинсом, Дж. Уотсоном и Ф. Криком в Англии. Это фундаментальное открытие позволило понять, как происходит удвоение (репликация) нуклеиновых кислот. Вскоре после этого американские исследователи А. Даунс и Дж. Гамов предположили, что структура белков каким-то образом закодирована в нуклеиновых кислотах, а к 1965 эта гипотеза была подтверждена многими исследователями: Ф. Криком в Англии, М. Ниренбергом и С. Очоа в США, Х. Кораной в Индии. Все эти открытия, результат столетнего изучения нуклеиновых кислот, произвели подлинную революцию в биологии. Они позволили объяснить феномен жизни в рамках взаимодействия между атомами и молекулами.
Типы и распространение. Как мы уже говорили, есть два типа нуклеиновых кислот: ДНК и РНК. ДНК присутствует в ядрах всех растительных и животных клеток, где она находится в комплексе с белками и является составной частью хромосом. У особей каждого конкретного вида содержание ядерной ДНК обычно одинаково во всех клетках, кроме гамет (яйцеклеток и сперматозоидов), где ДНК вдвое меньше. Таким образом, количество клеточной ДНК видоспецифично. ДНК найдена и вне ядра: в митохондриях ("энергетических станциях" клеток) и в хлоропластах (частицах, где в растительных клетках идет фотосинтез). Эти субклеточные частицы обладают некоторой генетической автономией. Бактерии и цианобактерии (сине-зеленые водоросли) содержат вместо хромосом одну или две крупные молекулы ДНК, связанные с небольшим количеством белка, и часто - молекулы ДНК меньшего размера, называемые плазмидами. Плазмиды несут полезную генетическую информацию, например содержат гены устойчивости к антибиотикам, но для жизни самой клетки они несущественны. Некоторое количество РНК присутствует в клеточном ядре, основная же ее масса находится в цитоплазме - жидком содержимом клетки. Большую ее часть составляет рибосомная РНК (рРНК). Рибосомы - это мельчайшие тельца, на которых идет синтез белка. Небольшое количество РНК представлено транспортной РНК (тРНК), которая также участвует в белковом синтезе. Однако оба этих класса РНК не несут информации о структуре белков - такая информация заключена в матричной, или информационной, РНК (мРНК), на долю которой приходится лишь небольшая часть суммарной клеточной РНК. Генетический материал вирусов представлен либо ДНК, либо РНК, но никогда обеими одновременно.
ОБЩИЕ СВОЙСТВА
Молекулы нуклеиновых кислот содержат множество отрицательно заряженных фосфатных групп и образуют комплексы с ионами металлов; их калиевая и натриевая соли хорошо растворимы в воде. Концентрированные растворы нуклеиновых кислот очень вязкие и слегка опалесцируют, а в твердом виде эти вещества белые. Нуклеиновые кислоты сильно поглощают ультрафиолетовый свет, и это свойство лежит в основе определения их концентрации. С этим же свойством связан и мутагенный эффект ультрафиолетового света. Длинные молекулы ДНК хрупки и легко ломаются, например при продавливании раствора через шприц. Поэтому работа с высокомолекулярными ДНК требует особой осторожности.
Химическая структура. Нуклеиновые кислоты - это длинные цепочки, состоящие из четырех многократно повторяющихся единиц (нуклеотидов). Их структуру можно представить следующим образом:

Символ Ф обозначает фосфатную группу. Чередующиеся остатки сахара и фосфорной кислоты образуют сахарофосфатный остов молекулы, одинаковый у всех ДНК, а огромное их разнообразие обусловливается тем, что четыре азотистых основания могут располагаться вдоль цепи в самой разной последовательности. Сахаром в нуклеиновых кислотах является пентоза; четыре из пяти ее углеродных атомов вместе с одним атомом кислорода образуют кольцо. Атомы углерода пентозы обозначают номерами от 1" до 5". В РНК сахар представлен рибозой, а в ДНК - дезоксирибозой, содержащей на один атом кислорода меньше. Фрагменты полинуклеотидных цепей ДНК и РНК показаны на рисунке.



Поскольку фосфатные группы присоединены к сахару асимметрично, в положениях 3" и 5", молекула нуклеиновой кислоты имеет определенное направление. Сложноэфирные связи между мономерными единицами нуклеиновых кислот чувствительны к гидролитическому расщеплению (ферментативному или химическому), которое приводит к высвобождению отдельных компонентов в виде небольших молекул. Азотистые основания - это плоские гетероциклические соединения. Они присоединены к пентозному кольцу по положению 1ў. Более крупные основания имеют два кольца и называются пуринами: это аденин (А) и гуанин (Г). Основания, меньшие по размерам, имеют одно кольцо и называются пиримидинами: это цитозин (Ц), тимин (Т) и урацил (У). В ДНК входят основания А, Г, Т и Ц, в РНК вместо Т присутствует У. Последний отличается от тимина тем, что у него отсутствует метильная группа (CH3). Урацил встречается в ДНК некоторых вирусов, где он выполняет ту же функцию, что и тимин.



Трехмерная структура. Важной особенностью нуклеиновых кислот является регулярность пространственного расположения составляющих их атомов, установленная рентгеноструктурным методом. Молекула ДНК состоит из двух противоположно направленных цепей (иногда содержащих миллионы нуклеотидов), удерживаемых вместе водородными связями между основаниями:


Водородные связи, соединяющие основания противоположных цепей, относятся к категории слабых, но благодаря своей многочисленности в молекуле ДНК они прочно стабилизируют ее структуру. Однако если раствор ДНК нагреть примерно до 60° С, эти связи рвутся и цепи расходятся - происходит денатурация ДНК (плавление). Обе цепи ДНК закручены по спирали относительно воображаемой оси, как будто они навиты на цилиндр. Эта структура называется двойной спиралью. На каждый виток спирали приходится десять пар оснований.


ДВОЙНАЯ СПИРАЛЬ ДНК. По своей структуре ДНК напоминает винтовую лестницу. Ее боковины составлены из чередующихся остатков сахара и фосфатных групп; каждый остаток сахара в одной боковине соединен со своим партнером в другой с помощью "перекладины", состоящей из пурина (аденина или гуанина) и пиримидина (цитозина или тимина), при этом аденин соединяется только с тимином, а гуанин - с цитозином.


Правило комплементарности. Уотсон и Крик показали, что образование водородных связей и регулярной двойной спирали возможно только тогда, когда более крупное пуриновое основание аденин (А) в одной цепи имеет своим партнером в другой цепи меньшее по размерам пиримидиновое основание тимин (Т), а гуанин (Г) связан с цитозином (Ц). Эту закономерность можно представить следующим образом:


Соответствие А"Т и Г"Ц называют правилом комплементарности, а сами цепи - комплементарными. Согласно этому правилу, содержание аденина в ДНК всегда равно содержанию тимина, а количество гуанина - количеству цитозина. Следует отметить, что две цепи ДНК, различаясь химически, несут одинаковую информацию, поскольку вследствие комплементарности одна цепь однозначно задает другую. Структура РНК менее упорядочена. Обычно это одноцепочечная молекула, хотя РНК некоторых вирусов состоит из двух цепей. Но даже такая РНК более гибка, чем ДНК. Некоторые участки в молекуле РНК взаимно комплементарны и при изгибании цепи спариваются, образуя двухцепочечные структуры (шпильки). В первую очередь это относится к транспортным РНК (тРНК). Некоторые основания в тРНК подвергаются модификации уже после синтеза молекулы. Например, иногда происходит присоединение к ним метильных групп.
ФУНКЦИЯ НУКЛЕИНОВЫХ КИСЛОТ
Одна из основных функций нуклеиновых кислот состоит в детерминации синтеза белков. Информация о структуре белков, закодированная в нуклеотидной последовательности ДНК, должна передаваться от одного поколения к другому, и поэтому необходимо ее безошибочное копирование, т.е. синтез точно такой же же молекулы ДНК (репликация).
Репликация и транскрипция. С химической точки зрения синтез нуклеиновой кислоты - это полимеризация, т.е. последовательное присоединение строительных блоков. Такими блоками служат нуклеозидтрифосфаты; реакцию можно представить следующим образом:


Энергия, необходимая для синтеза, высвобождается при отщеплении пирофосфата, а катализируют реакцию особые ферменты - ДНК-полимеразы. В результате такого синтетического процесса мы получили бы полимер со случайной последовательностью оснований. Однако большинство полимераз работает только в присутствии уже существующей нуклеиновой кислоты -матрицы, диктующей, какой именно нуклеотид присоединится к концу цепи. Этот нуклеотид должен быть комплементарен соответствующему нуклеотиду матрицы, так что новая цепь оказывается комплементарной исходной. Используя затем комплементарную цепь в качестве матрицы, мы получим точную копию оригинала. ДНК состоит из двух взаимно комплементарных цепей. В ходе репликации они расходятся, и каждая из них служит матрицей для синтеза новой цепи:


Так образуются две новые двойные спирали с той же последовательностью оснований, что и у исходной ДНК. Иногда в процессе репликации происходит "сбой", и возникают мутации (см. также НАСЛЕДСТВЕННОСТЬ). В результате транскрипции ДНК образуются клеточные РНК (мРНК, рРНК и тРНК):


Они комплементарны одной из цепей ДНК и являются копией другой цепи, за исключением того, что место тимина у них занимает урацил. Таким способом можно получить множество РНК-копий одной из цепей ДНК. В нормальной клетке передача информации осуществляется только в направлении ДНК -> ДНК и ДНК -> РНК. Однако в клетках, инфицированных вирусом, возможны и другие процессы: РНК -> РНК и РНК -> ДНК. Генетический материал многих вирусов представлен молекулой РНК, обычно одноцепочечной. Проникнув в клетку-хозяина, эта РНК реплицируется с образованием комплементарной молекулы, на которой, в свою очередь, синтезируется множество копий исходной вирусной РНК:


Вирусная РНК может транскрибироваться ферментом - обратной транскриптазой - в ДНК, которая иногда включается в хромосомную ДНК клетки-хозяина. Теперь эта ДНК несет вирусные гены, и после транскрипции в клетке может появиться вирусная РНК. Таким образом, спустя длительное время, в течение которого никакого вируса в клетке не обнаруживается, он снова в ней появится без повторного заражения. Вирусы, генетический материал которых включается в хромосому клетки-хозяина, часто являются причиной рака.
Трансляция нуклеиновых кислот в белки. Генетическая информация, закодированная в нуклеотидной последовательности ДНК, переводится не только на язык нуклеотидной последовательности РНК, но и на язык аминокислот - мономерных единиц белков. Белковая молекула - это цепочка из аминокислот. Каждая аминокислота содержит кислую карбоксильную группу -COOH и оснвную аминогруппу -NH2. Карбоксильная группа одной аминокислоты связывается с аминогруппой другой, образуя амидную связь, и этот процесс продолжается, пока не образуется цепь, содержащая до 1000 аминокислот (см. также БЕЛКИ). В белках присутствует 20 разных аминокислот, от последовательности которых зависят их природа и функции. Эта последовательность определяется нуклеотидной последовательностью соответствующего гена - участка ДНК, кодирующего данный белок. Однако сама ДНК не является матрицей при синтезе белка. Сначала она транскрибируется в ядре с образованием матричной РНК (мРНК), которая диффундирует в цитоплазму, и на ней как на матрице синтезируется белок. Процесс ускоряется благодаря тому, что на каждой молекуле мРНК может одновременно синтезироваться множество белковых молекул. Репликация нуклеиновых кислот осуществляется благодаря образованию водородных связей между комплементарными основаниями исходной и дочерней цепей. Аминокислоты не образуют водородных связей с основаниями, так что прямое копирование матрицы невозможно. Они взаимодействуют с матрицей опосредованно, через "адапторные" нуклеиновые кислоты - небольшие молекулы транспортных РНК (тРНК), состоящие примерно из 80 оснований и способные связываться с мРНК. Каждая тРНК содержит специфическую последовательность из трех оснований, антикодон, который комплементарен группе из трех оснований, кодону, в мРНК. Антикодоны взаимодействуют с кодонами по правилу комплементарности, примерно так же, как взаимодействуют две цепи ДНК. Таким образом, последовательность оснований в мРНК определяет порядок присоединения тРНК, несущих аминокислоты. Схематически перенос информации от ДНК к белку можно представить следующим образом:


Последовательность оснований в ДНК задает порядок следования аминокислот в белке, поскольку каждая аминокислота присоединяется специфическим ферментом только к определенным тРНК, а те, в свою очередь, - только к определенным кодонам в мРНК. Комплексы тРНК-аминокислота связываются с матрицей по одному в каждый данный момент времени. Ниже перечислены основные этапы белкового синтеза (см. также рисунок).



1. Ферменты, называемые аминоацил-тРНК-синтетазами, присоединяют аминокислоты к соответствующим тРНК. Таких ферментов 20, по одному для каждой аминокислоты. 2. Молекула мРНК присоединяется своим первым кодоном к небольшой частице, называемой рибосомой. Рибосомы состоят из примерно равных количеств рРНК и белка. Структура и функция рибосом весьма сложны, но главная их задача - облегчение взаимодействия мРНК и тРНК и ускорение полимеризации аминокислот, связанных с разными тРНК. 3. тРНК, нагруженная аминокислотой, связывается с соответствующим кодоном мРНК, которая, в свою очередь, контактирует с рибосомой. Образуется комплекс рибосома-мРНК-тРНК-аминокислота. 4. мРНК, подобно ленте на конвейере, продвигается по рибосоме на один кодон вперед. 5. Следующая тРНК, нагруженная аминокислотой, присоединяется ко второму кодону. 6. Первая и вторая аминокислоты связываются между собой. 7. Первая тРНК отсоединяется от комплекса, и теперь вторая тРНК несет две аминокислоты, связанные между собой. 8. мРНК снова продвигается на один кодон вперед, и все события повторяются, а растущая аминокислотная цепь удлиняется на одну аминокислоту. Процесс продолжается, пока не будет достигнут последний, "стоп"-кодон и последняя тРНК не отделится от готовой белковой цепи. В бактериальных клетках цепь из 100-200 аминокислот собирается за несколько секунд. В животных клетках этот процесс занимает около минуты.
Генетический код. Итак, каждая аминокислота в белке опосредованно детерминируется определенным кодоном (группой из 3 оснований) в мРНК и в конечном счете в ДНК. Поскольку в нуклеиновых кислотах имеется четыре вида оснований, число возможных кодонов составляет 4ґ4ґ4 = 64. Соответствие между кодонами и аминокислотами, которые они кодируют, называется генетическим или биологическим кодом. Это соответствие было установлено опытным путем: к разрушенным клеткам добавляли синтетические полинуклеотиды известного состава и смотрели, какие аминокислоты включаются в белки. Позднее появилась возможность прямо сравнить последовательности аминокислот в вирусных белках и оснований в вирусных нуклеиновых кислотах. Чрезвычайно интересно, что генетический код, за редкими исключениями, одинаков для всех организмов - от вирусов до человека. Одно из таких исключений составляют изменения в генетическом коде, используемом митохондриями. Митохондрии - это небольшие автономные субклеточные частицы (органеллы), присутствующие во всех клетках, кроме бактерий и зрелых эритроцитов. Предполагают, что когда-то митохондрии были самостоятельными организмами; проникнув в клетки, они со временем стали их неотъемлемой частью, но сохранили некоторое количество собственной ДНК и синтезируют несколько митохондриальных белков.
Вообще говоря, каждой аминокислоте соответствует более одного кодона. Большинство кодонов, кодирующих одну и ту же аминокислоту, имеют два одинаковых первых основания, но в трех случаях (для лейцина, серина и аргинина) имеются два альтернативных набора первых дублетов в кодонах, соответствующих одной и той же аминокислоте. Природа основания в третьем положении не столь важна; одна и та же аминокислота - глицин - может кодироваться по-разному: ГГУ, ГГЦ, ГГА и ГГГ. Однако кодоны для двух разных аминокислот могут иметь два одинаковых первых основания, и тогда различие между ними будет определяться природой третьего основания - пурином или пиримидином. Так, гистидин кодируется триплетами ЦАУ и ЦАЦ, а глутамин - ЦАА и ЦАГ. Три кодона, УАА, УАГ и УГА, не кодируют никаких аминокислот и называются "бессмысленными". Одна молекула ДНК кодирует много белковых цепей. Каждый отрезок, кодирующий одну цепь, называют цистроном. Начало и конец цистрона, а также граница раздела между ними помечаются с помощью своего рода знаков химической пунктуации. По крайней мере у бактерий в начале цистрона находится метиониновый кодон АУГ. Логично предположить, что первой аминокислотой в белке всегда должен быть метионин, но часто несколько первых аминокислот отщепляются ферментативно после окончания синтеза белка. Конец белковой цепи помечается одним или несколькими "бессмысленными" кодонами. У бактерий (прокариот) практически вся ДНК кодирует какие-либо белки или тРНК. Однако у высших форм (эукариот) значительная часть ДНК состоит из простых повторяющихся последовательностей и "молчащих" генов, которые не транскрибируются в РНК и поэтому не транслируются в белки. Кроме того, исходно синтезированная мРНК содержит участки, не детерминирующие никаких белковых последовательностей. Такие участки (интроны), расположенные между кодирующими участками (экзонами), перед началом синтеза белка удаляются специальными ферментами. Почему в ДНК существуют эти казалось бы бесполезные сегменты - неясно; возможно, они выполняют регуляторные функции. У простейшей Tetrahymena РНК сама удаляет свои интроны и соединяет свободные концы цепей, действуя как фермент по отношению к себе самой. Это единственное известное исключение из правила, согласно которому нуклеиновые кислоты не обладают ферментативной активностью.
Транспортные РНК и супрессия. Смысл информации, содержащейся в ДНК, если переводить ее на язык аминокислот, определяется как самой ДНК, так и считывающим механизмом, т.е. зависит не только от того, какие кодоны есть в ДНК и в какой последовательности они расположены, но также и от того, какие именно аминокислоты (и к каким тРНК) присоединяют аминоацил-тРНК-синтетазы. Конечно, природа синтетаз и тРНК тоже определяется ДНК, и в этом смысле ДНК является первичным детерминантом белковой последовательности. Тем не менее суммарная детерминация представляет собой функцию всей системы, поскольку результат зависит от исходных компонентов. Если бы соответствие между тРНК и аминокислотами было другим, смысл кодонов тоже изменился бы. Известно, что мутации в ДНК изменяют считывающий механизм и в результате меняют - пусть и незначительно - смысл кодонов. Так, в бактерии Escherichia coli глициновая тРНК обычно узнает в мРНК кодон ГГА; мутация в ДНК, с которой транскрибируется эта тРНК, изменяет антикодон глициновой тРНК таким образом, что теперь он узнает кодон АГА, соответствующий аргинину, и в белковой молекуле вместо аргинина появляется глицин. Это не обязательно имеет фатальные последствия, поскольку не все аргинины кодируются триплетом АГА и есть аргининовые тРНК, по-прежнему узнающие "свои" АГА. В результате измененными оказываются не все белковые молекулы. Иногда такие мутации, изменяющие антикодон, подавляют (супрессируют) мутации в кодоне. Например, если в результате мутации глициновый кодон ГГА превращается в АГА, он все же может прочитываться как глицин, если антикодон глициновой тРНК, в свою очередь, изменился так, что эта тРНК стала узнавать АГА. В этом случае вторая "ошибка" устраняет первую. Мутации, приводящие к изменению антикодонов, могут иметь разные последствия, поскольку один и тот же кодон может узнаваться несколькими тРНК. Вообще говоря, узнавание осуществляется благодаря комплементарности оснований кодона и антикодона, однако одно из оснований кодона может модифицироваться таким образом, что антикодон будет узнавать даже неполностью комплементарный кодон. В результате одна и та же тРНК может взаимодействовать с несколькими разными кодонами, кодирующими одну и ту же аминокислоту. Этот феномен неполного соответствия кодона и антикодона был назван Ф. Криком "шатанием".
Регуляция активности генов. Для организма было бы катастрофой, если бы во всех его клетках одновременно работали все гены и синтезировались все закодированные ими белки. Бактерии, например, должны все время приспосабливаться к условиям среды, синтезируя нужные ферменты. Все клетки высших организмов имеют один и тот же набор генов, но, к счастью, клетки мозга не продуцируют пищеварительные ферменты, а в хрусталике глаза не синтезируются мышечные белки. Активность гена характеризуется тем, транскрибируется ли он с образованием соответствующей мРНК. ДНК - длинная молекула, и в определенных ее участках имеются последовательности, называемые промоторами, которые распознаются специфическим транскрибирующим ферментом - полимеразой. В этих участках и только в них начинается транскрипция, продолжаясь до тех пор, пока не достигнет последовательности оснований, означающей конец считывания. Существуют особые репрессорные белки, которые связываются с ДНК поблизости от промотора в участке, называемом оператором. Образовавшийся комплекс блокирует транскрипцию, и мРНК не синтезируется. Таким образом, репрессорные белки являются ингибиторами транскрипции. С другой стороны, существуют небольшие молекулы, которые образуют комплекс с репрессорами и снимают их блокирующее действие на транскрипцию. Иными словами, они ингибируют ингибиторы. Так, у бактерий в норме отсутствуют ферменты, катализирующие расщепление некоторых сахаров; однако если один из этих сахаров появляется в среде, он образует комплекс с репрессором, ингибирование снимается и запускается синтез соответствующего фермента. Ферменты, синтез которых индуцируется собственными субстратами, называются индуцибельными. В ряде случаев, наоборот, репрессорный белок не блокирует транскрипцию мРНК, если он не связан с определенной молекулой. У бактерий некоторые ферменты, участвующие в синтезе определенных аминокислот, образуются только в отсутствие этих аминокислот, т.е. бактерии производят данные ферменты лишь по мере надобности. Если добавить в среду соответствующую аминокислоту, она образует комплекс с репрессором и активирует его, а тем самым ингибирует транскрипцию соответствующих генов. Уже образовавшаяся мРНК вскоре расщепляется, и синтез ферментов останавливается. Такие ферменты являются отрицально индуцибельными. Поскольку репрессорные белки сами кодируются генами, работа которых, в свою очередь, может регулироваться другими генами, а синтез малых молекул-индукторов и гормонов также в конечном счете регулируется генами, механизмы регуляции генной активности могут быть очень сложными.
ЛИТЕРАТУРА
Ичас М. Биологический код. М., 1971 Шабарова З.А., Богданов А.А. Химия нуклеиновых кислот и их компонентов, М., 1978 Зенгер В. Принципы структурной организации нуклеиновых кислот. М., 1987

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "НУКЛЕИНОВЫЕ КИСЛОТЫ" в других словарях:

    Полинуклеотиды, фосфорсодержащие биополимеры, имеющие универсальное распространение в живой природе. Впервые обнаружены Ф. Мишером в 1868 в клетках, богатых ядерным материалом (лейкоцитах, сперматозоидах лосося). Термин «Н. к.» предложен в 1889.… … Биологический энциклопедический словарь

    - (полинуклеотиды), высокомолекулярные органические соединения, образованные остатками нуклеотидов. В зависимости от того, какой углевод входит в состав нуклеиновой кислоты дезоксирибоза или рибоза, различают дезоксирибонуклеиновую (ДНК) и… … Современная энциклопедия