Реферат: Неорганические вещества и их роль в жизни человека. Органические и неорганические вещества клетки

Вспомните вещества, необходимые организмам для их жизнедеятельности. Какую роль играют водные растворы в природе и в жизни человека? Какой тип химической связи существует в молекуле воды? Что такое ионы и как они образуются?

Химические элементы живых организмов

В состав растительных и животных клеток входит более 70 химических элементов. Но в клетке нет каких-либо особенных элементов, характерных только для живой природы. Те же элементы встречаются и в неживой природе.

Все химические элементы по содержанию в живой клетке разделяют на три группы: макроэлементы, микроэлементы и ультрамикроэлементы.

Элементы O, C, H, N иногда рассматривают как отдельную группу органогенных элементов ввиду того, что они входят в состав всех органических веществ и составляют до 98 % массы живой клетки.

Неорганические вещества живых организмов

Изучая химию, вы узнали о таких группах веществ, как кислоты, соли, оксиды и др. Все они распространены в неживой природе, вне живых организмов. Поэтому их и называют неорганическими веществами. Но это не означает, что в живых организмах их вообще нет. Они есть и играют очень важную роль в процессах жизнедеятельности.

Неорганические вещества обычно попадают в живые организмы из внешней среды с пищей (у животных) или с раствором воды через поверхность организма (у растений, грибов и бактерий). Но в некоторых случаях живые организмы могут синтезировать их самостоятельно. Например, клетки желудка у позвоночных синтезируют хлоридную кислоту. Это позволяет более эффективно переваривать пищу, так как многие пищеварительные ферменты работают в кислой среде. Также самостоятельно вырабатывают сульфатную кислоту многие хищные моллюски в своих слюнных железах. Эта кислота может разрушать раковины и внешние покровы их жертв.

Функции неорганических веществ в клетке

Неорганические вещества

Функции в клетке

Катионы Гидрогена (H+)

Обеспечивают кислотно-щелочной баланс (поддерживают постоянство внутриклеточной среды)

Катионы и анионы растворимых солей (Na+, K+, Cl)

Создают разность потенциалов между содержимым клетки и внеклеточной средой, обеспечивая проведение нервного импульса

Слаборастворимые соли Кальция и Фосфора

Образуют опорные структуры (например, в костях позвоночных)

Ионы металлических элементов

Являются компонентами многих гормонов, ферментов и витаминов или участвуют в их активации

Сложные неорганические соединения Нитрогена, Кальция и Фосфора

Участвуют в синтезе органических молекул

Неорганические соединения могут находиться в живых организмах как в растворенном (в виде ионов), так и в нерастворенном виде. Растворенными формами представлены многие соли.

Нерастворимые неорганические соединения также важны для живых организмов. Например, соли Кальция и Фосфора входят в состав скелета животных и обеспечивают его прочность (рис. 2.1, с. 10). Без таких веществ невозможно формирование здоровых зубов у человека.

Из неорганических веществ также могут быть образованы различные структуры организмов животных (рис. 2.2).


Свойства воды

Свойства воды обусловлены особенностями строения ее молекулы, а также связями молекул друг с другом.

Как вы уже знаете, в молекуле воды (химическая формула — H 2 O) между атомами Гидрогена и Оксигена существует ковалентная полярная связь (рис. 2.3). Это значит, что на атоме Оксигена формируется частичный отрицательный заряд (S -), а на атомах Гидрогена — положительный (S+). Положительно заряженный атом Гидрогена одной молекулы воды притягивается к отрицательно заряженному атому Оксигена другой молекулы воды. Такая связь называется водородной.

Водородная связь примерно в 15-20 раз слабее ковалентной. Поэтому водородная связь относительно легко разрывается, что происходит, например, при испарении воды. В жидком состоянии водородные связи между молекулами воды все время то разрываются, то образуются заново.


Биологическая роль воды

В живых организмах вода выполняет много функций: среды-растворителя, транспортную, метаболическую, терморегуляторную, структурную.

Вода является универсальным растворителем. Вещества, участвующие в большинстве биологических реакций, находятся в организме в водном растворе.

Транспортная роль воды очень важна для клеток и организмов в целом. Растворенные вещества вместе с водой могут переноситься из одних частей клетки в другие. А между различными частями многоклеточных организмов они переносятся в составе специальных жидкостей (например, в составе крови). Испарение воды листьями растений вызывает ее движение от корней вверх. При этом перемещаются и вещества, растворенные в воде.

Молекулы воды выполняют метаболическую функцию, когда участвуют в реакциях обмена веществ (их называют биохимическими реакциями). Терморегуляторная функция воды чрезвычайно важна для поддержания температуры тела организмов. Когда, например, человек потеет, то вода испаряется, снижая температуру его тела.

Структурная функция воды хорошо видна на примере растений и некоторых беспозвоночных животных. Растения поддерживают форму листьев и травянистых стеблей благодаря повышенному давлению в клетках, наполненных водой. А у многих червей форма тела поддерживается повышенным давлением воды в полостях тела.

В живых организмах содержатся как органические, так и неорганические вещества. Неорганические вещества — это вода, соли, кислоты и другие соединения. Они играют важную роль в жизнедеятельности живых организмов. Вода создает среду, в которой происходят реакции обмена веществ. Другие неорганические вещества участвуют в формировании скелета, работе нервной, пищеварительной и других систем организма.

Проверьте свои знания

1. Какие неорганические вещества встречаются в живых организмах? 2. Докажите на примерах, что свойства воды имеют большое значение для живых клеток. 3. Какие функции могут выполнять кислоты в живых организмах? 4*. К каким последствиям для организма человека может привести потеря солей Na?

Это материал учебника

Введение

Я выбрала достаточно сложную тему, так как в ней сочетаются множество наук, изучение которых очень важно в мире: биология, экология, химия и т.д. Моя тема значима в курсе школьной химии и биологии. Человек очень сложный живой организм, но его изучение показалось мне довольно интересным. Я считаю, что каждый человек должен знать из чего он состоит.

Цель : подробнее изучить химические элементы, входящие в состав человека и взаимодействие их в организме.

Для достижения указанной цели были поставлены следующие задачи :

  • 1) Изучить элементарный состав живых организмов;
  • 2) Выделить основные группы химических элементов: микро- и макроэлементы;
  • 3) Определить, какие химические элементы отвечают за рост, работу мышц, нервной системы и т.д.;
  • 4) Провести лабораторные опыты, подтверждающие наличие углерода, азота и железа в организме человека.

Методы и приемы: анализ научной литературы, сравнительный анализ, синтез, классификация и обобщение отобранного материала; метод наблюдения, эксперимент (физический и химический).

Химические элементы в организме человека

Все живые организмы на Земле, в том числе и человек, находятся в тесном контакте с окружающей средой. Пищевые продукты и питьевая вода способствуют поступлению в организм практически всех химических элементов. Они повседневно вводятся в организм и выводятся из него. Анализы показали, что количество отдельных химических элементов и их соотношение в здоровом организме различных людей примерно одинаковы.

Многие учёные считают, что в живом организме не только присутствуют все химические элементы, но каждый из них выполняет определённую биологическую функцию. Достоверно установлена роль около 30 химических элементов, без которых организм человека не может нормально существовать. Эти элементы называют жизненно необходимыми. Организм человека состоит на 60% из воды, 34% приходится на органические и 6% - на неорганические вещества.

Тело человека, весящего 70 кг, состоит из:

Углерода-12,6 кг Хлора-200 граммов

Кислорода-45,5 кг Фосфора-0,7 кг

Водорода-7 кг Серы-175 граммов

Азота-2,1 кг Железа-5 граммов

Кальция-1,4 кг Фтора-100 граммов

Натрия-150 граммов Кремния-3 грамма

Калия-100 граммов Йода- 0,1 грамма

Магния-200 граммов Мышьяка-0,0005 грамма

4 кита жизни

Углерод, кислород, азот и водород - это четыре химических элемента, которые химики называют "китами химии", и которые в то же время являются основными элементами жизни. Из молекул этих четырех элементов построены не только живые белки, но вся природа вокруг нас и в нас.

В отдельности углерод - это мертвый камень. Азот, как кислород, свободный газ. Азот ничем не связан. Водород, связанный с кислородом, образует воду, а все вместе они создают Вселенную.

В своих простых соединениях - это вода на Земле, облака в атмосфере и воздух. В более сложных соединениях - это углеводы, соли, кислоты, щелочи, спирты, сахара, жиры и белковые вещества. Усложняясь еще больше, они достигают высшей стадии развития - создают жизнь.

Углерод - основа жизни.

Все органические вещества, из которых построены живые организмы, отличаются от неорганических тем, что в их основе лежит химический элемент углерод. В состав органических веществ входят и другие элементы: водород, кислород, азот, сера и фосфор. Но все они группируются вокруг углерода, который является основным центральным элементом.

Академик Ферсман назвал его основой жизни, потому что без углерода жизнь невозможна. Нет другого химического элемента с таким своеобразными свойствами, как углерод.

Однако это вовсе не означает, что углерод составляет основную массу живого вещества. В любом организме углерода имеется всего 10%, воды-80%, а остальные десять процентов приходятся на другие химические элементы, входящие в состав организма.

Характерной особенностью углерода в органических соединениях является его безграничная способность связывать в разнообразнейших сочетаниях разные элементы в атомные группы.

Весь наш мир: растения, животный мир, все, что нас окружает, состоит из одних и тех же микроэлементов, которые присутствуют в разных концентрациях во всем и, конечно же, в нашей пище.

Каждый элемент влияет на наше здоровье. Содержание элементов в продуктах питания величина очень изменчивая. Более стабильной и постоянной величиной является содержание элементов в организме здорового человека, хотя и оно может иметь вариабельность (изменчивость).

Для организма человека определенно установлена роль около 30 химических элементов, без которых он не может нормально существовать. Эти элементы называют жизненно необходимыми. Кроме них, имеются элементы, которые в малых количествах не сказываются на функционировании организма, но при определенном содержании являются ядами.

Макроэлементы - содержание в организме более одного грамма: фосфор, калий, сера, натрий, хлор, магний, железо, фтор, цинк, кремний, цирконий - 11 элементов.

Микроэлементы - содержание в организме более одного миллиграмма: рубидий, стронций, бром, свинец, ниобий, медь, алюминий, кадмий, барий, бор (первая десятка микроэлементов), теллур, ванадий, мышьяк, олово, селен, титан, ртуть, марганец, йод, никель, золото, молибден, сурьма, хром, иттрий, кобальт, цезий, германий - 28 элементов. Каждый элемент влияет на наше здоровье. Содержание элементов в продуктах питания величина очень изменчивая. Более стабильной и постоянной величиной является содержание элементов в организме здорового человека, хотя и оно может иметь вариабельность (изменчивость).

Предположения некоторых ученых идут дальше. Они считают, что в живом организме не только присутствуют все химические элементы, но каждый из них выполняет определенную биологическую функцию. Вполне возможно, что эта гипотеза не подтвердится. Однако, по мере того, как развиваются исследования в данном направлении, выявляется биологическая роль все большего числа химических элементов.

Организм человека состоит на 60% из воды, 34% приходится на органические вещества и 6% - на неорганические. Основными компонентами органических веществ являются углерод, водород, кислород, в их состав входят также азот, фосфор и сера. В неорганических веществах организма человека обязательно присутствуют 22 химических элемента: Ca, P, O, Na, Mg, S, B, Cl, K, V, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cr, Si, I, F, Se.

Например, если вес человека составляет 70 кг, то в нем содержится (в граммах): кальция - 1700, калия - 250, натрия - 70, магния - 42, железа - 5, цинка - 3.

Ученые договорились, что если массовая доля элемента в организме превышает 10-2%, то его следует считать макроэлементом. Доля микроэлементов в организме составляет 10-3-10-5%.



Имеется большое число химических элементов, особенно среди тяжелых, являющихся ядами для живых организмов, - они оказывают неблагоприятное биологическое воздействие. К этим элементам можно отнести: Ba, Ni, Pd, Pt, Au, Ag, Hg, Cd, Tl, Pb, As, Sb, Se.

Встречаются элементы, которые в относительно больших количествах являются ядами, а в низких концентрациях оказывают полезное влияние. Например, мышьяк - сильный яд, нарушающий сердечно-сосудистую систему и поражающий почки и печень, в небольших дозах полезен, и врачи прописывают его для улучшения аппетита. Кислород, необходимый человеку для дыхания, в высокой концентрации (особенно под давлением) оказывает ядовитое действие. Среди примесных элементов имеются и такие, которые в малых дозах обладают эффективными лечащими свойствами. Так, давно было замечено бактерицидное (вызывающее гибель различных бактерий) свойство серебра и его солей. Например, в медицине раствор коллоидного серебра (колларгол) применяют для промывания гнойных ран, мочевого пузыря, при хронических циститах и уретритах, а также в виде глазных капель при гнойных конъюктивитах и бленнорее. Карандаши из нитрата серебра применяют для прижигания бородавок, грануляций. В разбавленных растворах (0,1-0,25%) нитрат серебра используют как вяжущее и противомикробное средство для примочек, а также в качестве глазных капель. Ученые считают, что прижигающее действие нитрата серебра связано с его взаимодействием с белками тканей, что приводит к образованию белковых солей серебра - альбуминатов. Серебро пока не относят к жизненно необходимым элементам, однако уже экспериментально установлено его повышенное содержание в мозгу человека, в железах внутренней секреции, печени. В организм серебро поступает с растительной пищей, например с огурцами и капустой.

Весьма интересен вопрос о принципах отбора природой химических элементов для функционирования живых организмов. Не вызывает сомнения, что их распространенность не является решающим фактором. Здоровый организм сам способен регулировать содержание отдельных элементов. При наличии выбора (пищи и воды) животные инстинктивно могут вносить лепту в это регулирование. Возможности растений в данном процессе ограничены.

Органические вещества клетки. Основные жизненно необходимые соединения – белки, жиры и углеводы. Биополимеры.

Органические соединения составляют в среднем 20-30% массы клетки живого организма. К ним относятся биологические полимеры, белки, углеводы, липиды, гормоны, нуклеиновые кислоты, витамины.

Биологические полимеры – органические соединения, входящие в состав клеток живых организмов. Полимер – многозвенная цепь простых веществ – мономеров (n ÷ 10тыч. – 100тыс. мономеров.

Свойства биополимеров зависят от строения их молекул, от числа и разнообразия мономерных звеньев. Если мономеры разные, то повторяющиеся чередования их в цепи создают регулярный полимер.

…А – А – В – А – А – В… регулярный

…А – А – В – В – А – В – А… нерегулярный

Углеводы

Общая формула Сn(H 2 O)m

Углеводы в организме человека играют роль энергетических веществ. Самые важные из них – сахароза, глюкоза, фруктоза, а также крахмал. Они быстро усваиваются ("сгорают") в организме. Исключение составляет клетчатка (целлюлоза), которой особенно много в растительной пище. Она практически не усваивается организмом, но имеет большое значение: выступает в роли балласта и помогает пищеварению, механически очищая слизистые оболочки желудка и кишечника. Углеводов много в картофеле и овощах, крупах, макаронных изделиях, фруктах и хлебе.

Пример: глюкоза, рибоза, фруктоза, дезоксирибоза – моносахариды. Сахароза – дисахариды. Крахмал, гликоген, целлюлоза - полисахариды

Нахождение в природе : в растениях, фруктах, в цветочной пыльце, овощах (чеснок, свекла), картофеле, рисе, кукурузе, зерне пшеницы, древесине…

Их функции:

1) энергетическая: при окислении до СО2 и Н2О высвобождается энергия; избыток энергии запасается в клетках печени и мышц в виде гликогена;

2) строительная: в растительной клетке – прочная основа клеточных стенок (целлюлоза);

3) структурная: входят в состав межклеточного вещества кожи сухожилий хрящей;

4) узнавание клетками др.: в составе клеточных мембран, если разделённые клетки печени смешать с клетками почек, то они самостоятельно разойдутся на две группы благодаря взаимодействию однотипных клеток.

Липиды (липоиды, жиры)

К липидам относятся разнообразные жиры, жироподобные вещества, фосфорлипиды… Все они нерастворимы в воде, но растворимы в хлороформе, эфире…

Нахождение в природе : в клетках животных и человека в клеточной мембране; между клетками – подкожный слой жира.

Функции:

1) теплоизоляционная (у китов, ластоногих …);

2) запасное питательное вещество;

3) энергетическая: при гидролизе жиров выделяется энергия;

4) структурная: некоторые липиды служат составной частью клеточных мембран.

Жиры тоже служат для человеческого организма источником энергии. Их организм откладывает "про запас" и они служат энергетическим источником долговременного пользования. Кроме того, жиры обладают низкой теплопроводностью и предохраняют организм от переохлаждения. Неудивительно, что в традиционном рационе северных народов так много животных жиров. Для людей, занятых тяжелым физическим трудом, затраченную энергию тоже проще всего (хотя и не всегда полезней) компенсировать жирной пищей. Жиры входят в состав клеточных стенок, внутриклеточных образований, в состав нервной ткани. Еще одна функция жиров – поставлять в ткани организма жирорастворимые витамины и другие биологически активные вещества.


Белки

Рисунок - Молекула белка

Белки – биополимеры, мономерами которых являются аминокислоты.

Образование линейных молекул белков происходит в результате реакций аминокислот др. с др.

Источниками белков могут служить не только животные продукты (мясо, рыба, яйца, творог), но и растительные, например, плоды бобовых (фасоль, горох, соя, арахис, которые содержат до 22–23% белков по массе), орехи и грибы. Однако больше всего белка в сыре (до 25 %), мясных продуктах (в свинине 8–15 %, баранине 16–17 %, говядине 16–20 %), в птице (21 %), рыбе (13–21 %), яйцах (13 %), твороге(14 %). Молоко содержит 3 % белков, а хлеб 7–8 %. Среди круп чемпион по белкам – гречневая крупа (13 % белков в сухой крупе), поэтому именно ее рекомендуют для диетического питания. Чтобы избежать "излишеств" и в то же время обеспечить нормальную жизнедеятельность организма, надо, прежде всего, дать человеку с пищей полноценный по ассортименту набор белков. Если белков в питании недостает, взрослый человек ощущает упадок сил, у него снижается работоспособность, его организм хуже сопротивляется инфекции и простуде. Что касается детей, то они при неполноценном белковом питании сильно отстают в развитии: дети растут, а белки – основной "строительный материал" природы. Каждая клетка живого организма содержит белки. Мышцы, кожа, волосы, ногти человека состоят главным образом из белков. Более того, белки – основа жизни, они участвуют в обмене веществ и обеспечивают размножение живых организмов.

Строение:

первичная структура – линейная, с чередованием аминокислот;

вторичная – в виде спирали со слабыми связями между витками (водородными);

третичная – спираль свёрнутая в клубок;

четвертичная – при объединении нескольких цепей, различных по первичной структуре.

Функции:

1) строительная: белки являются обязательным компонентом всех клеточных структур;

2) структурная: белки в соединении с ДНК составляют тело хромосом, а с РНК – тело рибосом;

3) ферментативная: катализатором хим. реакций выступает любой фермент – белок, но очень специфичный;

4) транспортная: перенос О 2 , гормонов в теле животных и человека;

5) регуляторная: белки могут выполнять регуляторную функцию, если они являются гормонами. Например инсулин (гормон, поддерживающий работу поджелудочной железы) активизирует захват клетками молекул глюкозы и расщепление или запасание их внутри клетки. При недостатке инсулина глюкоза накапливается в крови, развивая диабет;

6) защитная: при попадании инородных тел в организме вырабатываются защитные белки – антитела, которые связываются с чужеродными, соединяются и подавляют их жизнедеятельность. Такой механизм сопротивления организма называют иммунитетом;

7) энергетическая: при недостатке углевода и жиров могут окислиться молекулы аминокислот.

Понятие «жизнь». Основные признаки живого: питание, дыхание, выделение, раздражимость, подвижность, размножение, рост и развитие.

Биология – наука о происхождении и развитии живого, его строении, формах организации и способах активности. В настоящее время насчитывается более 50 наук внутри комплекса биологического знания, среди них: ботаника, зоология, анатомия, морфология, биофизика, биохимия, экология и т.д. Такое многообразие научных дисциплин объясняется сложностью объекта исследования – живой материи .

С этой точки зрения особенно важно понять, какие критерии лежат в основе разделения материи - на живую и неживую.

В классической биологии соперничали две противоположные позиции, объяснявшие сущность живого принципиально различным образом, - редукционизм и витализм.

Сторонники редукционизма считали, что все процессы жизнедеятельности организмов можно свести к совокупности определенных химических реакций. Термин «редукционизм» происходит от латинского слова redaction – отодвигать назад, возвращать. Идеи биологического редукционизма опирались на представления вульгарного механистического материализма, получившего наибольшее распространение в философии 17 – 18 вв. Механистический материализм все процессы, происходящие в природе, объяснял с точки зрении законов классической механики. Адаптация механистической материалистической позиции к биологическому познанию привела к формированию биологического редукционизма. С точки зрения современного естествознания, редукционистическое объяснение не может быть признано удовлетворительным, поскольку выхолащивает саму сущность живого. Наиболее широкое распространение редукционизм получил в 18 веке.

Противоположностью редукционизма является витализм , сторонники которого объясняют специфику живых организмов присутствием в них особой жизненной силы. Термин «витализм» происходит от латинского слова vita – жизнь. Философской базой витализма является идеализм. Витализм не объяснял специфики и механизмов функционирования живого, сводя все отличия органического от неорганического к действию таинственной и непознанной «жизненной силы».

Современная биология основными свойствами живого считает:

1)самостоятельный обмен веществ,

2) раздражимость,

4) способность к размножению,

5) подвижность,

6) приспособляемость к среде

По совокупности этих свойств живое отличается от неживого. Биологические системы – это целостные открытые системы, постоянно обменивающиеся с окружающей средой веществом, энергией, информацией и способные к самоорганизации. Живые системы активно реагируют на изменения окружающей среды, приспосабливаются к новым условиям. Отдельные качества живого могут быть присущи и неорганическим системам, но ни одна из неорганических систем не обладает совокупностью перечисленных свойств.

Существуют переходные формы, которые объединяют в себе свойства живого и неживого, например вирусы. Слово «вирус» образовано от латинского virus – яд. Вирусы были открыты в 1892 году русским ученым Д.Ивановским. С одной стороны, они состоят из белков и нуклеиновых кислот и способны к самовоспроизводству, т.е. имеют признаки живых организмов, но с другой стороны, вне чужого организма или клетки они не проявляют признаков живого – не имеют собственного обмена веществ, не реагируют на раздражители, не способны к росту и размножению.

Все живые существа на Земле имеют одинаковый биохимический состав: 20 аминокислот, 5 азотистых оснований, глюкоза, жиры. Современной органической химии известно более 100 аминокислот. По-видимому, такое небольшое число соединений, образующих все живое, является результатом отбора, который происходил на этапе предбиологической эволюции. Белки, из которых состоят живые системы, представляют собой высокомолекулярные органические соединения. В каждом конкретном белке порядок аминокислот всегда один и тот же. Большинство белков выступает в качестве ферментов – катализаторов химических реакций, происходящих в живых системах.

Значительным достижением классической биологии стало создание теории клеточного строения живых организмов. В комплексе современных биологических знаний существует отдельная дисциплина, занимающаяся изучением клетки – цитология.

Понятие «клетка» было введено в научных обиход английским ботаником Р.Гуком в 1665 году. Рассматривая среды высушенной пробки, он обнаружил множество ячеек, или камер, которые назвал клетками. Однако с момента этого открытия до создания клеточной теории прошло два столетия.

В 1837 году немецкий ботаник М.Шлейден предложил теорию образования растительных клеток. По мнению Шлейдена, важную роль в размножении и развитии клеток играет клеточное ядро, существование которого было устновлено в 1831 году Р.Броуном.

В 1839 году соотечественник М.Шлейдена анатом Т.Шванн, опираясь на экспериментальные данные и теоретические выводы создал клеточную теориюстроения живых организмов. Создание в середине 19 века клеточной теории стало существенным шагом в становлении биологии как самостоятельной научной дисциплины.

Основные положения клеточной теории

1. Клетка – это элементарная биологическая единица, структурно-функциональная основа всего живого.

2. Клетка осуществляет самостоятельный обмен веществ, способны к делению и саморегуляции.

3. Образование новых клеток из неклеточного материала невозможно, размножение клеток происходит только благодаря их делению.

Клеточная теория строения живых организмов стала убедительным аргументом в пользу идеи единства происхождения жизни на Земле и оказала существенное влияние на формирование современной научной картины мира.


Неорганические вещества и их роль в клетке

Вода. Из неорганических веществ, входящих в состав клетки, важнейшим является вода. Количество ее составляет от 60 до 95% общей массы клетки. Вода играет важнейшую роль в жизни клеток и живых организмов в целом. Помимо того что она входит в их состав, для многих организмов это еще и среда обитания.

Роль воды в клетке определяется ее уникальными химическими и физическими свойствами, связанными главным образом с малыми размерами молекул, с полярностью ее молекул и с их способностью образовывать друг с другом водородные связи.

Вода как компонент биологических систем выполняет следующие важнейшие функции:

Вода-универсальный растворитель для полярных веществ, например солей, Сахаров, спиртов, кислот и др. Вещества, хорошо растворимые в воде, называются гидрофильными. Когда вещество переходит в раствор, его молекулы или ионы получают возможность двигаться более свободно; соответственно возрастает реакционная способность вещества. Именно по этой причине большая часть химических реакций в клетке протекает в водных растворах. Ее молекулы участвуют во многих химических реакциях, например при образовании или гидролизе полимеров. В процессе фотосинтеза вода является донором электронов, источником ионов водорода и свободного кислорода.

Неполярные вещества вода не растворяет и не смешивается с ними, поскольку не может образовывать с ними водородные связи. Нерастворимые в воде вещества называются гидрофобными. Гидрофобные молекулы или их части отталкиваются водой, а в ее присутствии притягиваются друг к другу. Такие взаимодействия играют важную роль в обеспечении стабильности мембран, а также многих белковых молекул, нуклеинов вых кислот и ряда субклеточных структур.

Вода обладает высокой удельной теплоемкостью. Для разрыва водородных связей, удерживающих молекулы воды, требуется поглотить большое количество энергии. Это свойство обеспечивает поддержание теплового баланса организма при значительных перепадах температуры в окружающей среде. Кроме того, вода отличается высокой теплопроводностью, что позволяет организму поддерживать одинаковую температуру во всем его объеме.

Вода характеризуется высокой теплотой парообразования, т. е. способностью молекул уносить с собой значительное количество тепла при одновременном охлаждении организма. Благодаря этому свойству воды, проявляющемуся при потоотделении у млекопитающих, тепловой одышке у крокодилов и других животных, транспирации у растений, предотвращается их перегрев.

Для воды характерно исключительно высокое поверхностное натяжение. Это свойство имеет очень важное значение для адсорбционных процессов, для передвижения растворов по тканям (кровообращение, восходящий и нисходящий токи в растениях). Многим мелким организмам поверхностное натяжение позволяет удерживаться на воде или скользить по ее поверхности.

Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма.

У растений вода определяет тургор клеток, а у некоторых животных выполняет опорные функции, являясь гидростатическим скелетом (круглые и кольчатые черви, иглокожие).

Вода - составная часть смазывающих жидкостей (синовиальной - в суставах позвоночных, плевральной - в плевральной полости, перикардиальной - в околосердечной сумке) и слизей (облегчают передвижение веществ по кишечнику, создают влажную среду на слизистых оболочках дыхательных путей). Она входит в состав слюны, желчи, слез, спермы и др.

Минеральные соли. Неорганические вещества в клетке, кроме воды, прецспавлевы минеральными солями. Молекулы солей в водном растворе распадаются на катионы и анионы. Наибольшее значение имеют катионы (К+, Na+, Са2+, Mg:+, NH4+) и анионы (С1, Н2Р04 -, НР042-, НС03 -, NO32--, SO4 2-) Существенным является не только содержание, но и соотношение ионов в клетке.

Разность между количеством катионов и анионов на поверхности и внутри клетки обеспечивает возникновение потенциала действия, что лежит в основе возникновения нервного и мышечного возбуждения. Разностью концентрации ионов по разные стороны мембраны обусловлен активный перенос веществ через мембрану, а также преобразование энергии.

Анионы фосфорной кислоты создают фосфатную буферную систему, поддерживающую рН внутриклеточной среды организма на уровне 6,9.

Угольная кислота и ее анионы формируют бикарбонатную буферную систему, поддерживающую рН внеклеточной среды (плазма крови) на уровне 7,4.

Некоторые ионы участвуют в активации ферментов, создании осмотического давления в клетке, в процессах мышечного сокращения, свертывании крови и др.

Ряд катионов и анионов необходим дпясинтеза важных органических веществ (например, фосфолипидов, АТФ, нуклеоти-дов, гемоглобина, гемоцианина, хлорофилла и др.), а также аминокислот, являясь источниками атомов азота и серы.

Организм человека — открытая биологическая система. Организм человека является системой многоуровневой. Она состоит из систем органов, каждая система органов — из органов, каждый орган — из тканей, ткани — из клеток. Каждая клетка является системой взаимосвязанных органелл.

Организм человека является открытой системой, которая постоянно обменивается веществами и энергией с окружающей средой. Из него в организм во время газообмена поступает кислород, а вместе с едой — вода и питательные вещества. Наружу организм удаляет углекислый газ, непереваренные остатки пищи, мочу, пот, секрет сальных желез.

Внешне организм получает тепловую энергию и питательные вещества (белки, жиры, углеводы), молекулы которых аккумулируют химическую энергию. Она высвобождается при реакций расщепления этих веществ в организме. Часть химической энергии расходуется на процесс его жизнедеятельности, а избыток в виде тепла возвращается во внешнюю среду.

Неорганические вещества

Среди всех неорганических веществ содержание воды в организме человека является наибольшим. Она составляет до 90% массы эмбриона и до 70% массы организма пожилого человека. Вода является растворителем, который обеспечивает транспорт веществ в организме. Растворенные в воде вещества приобретают способность к взаимодействию. Вода участвует и в процессах теплообмена между организмом и окружающей средой.

В организме человека содержится немало неорганических веществ. Одни из них присутствуют в виде молекул, как, например, соединения кальция в костях, вещества — в виде ионов. Так, ионы железа участвуют в транспорте кислорода в крови, ионы кальция необходимы для сокращения мышц, а ионы калия и натрия — для образования и передачи нервных импульсов.

Органические вещества

Молекулы многих органических веществ состоят из блоков — простых органических молекул. Такое строение имеют все белки. Они образованы из молекул аминокислот. Обычно цепочка аминокислот сворачивается в волокнистые или клубоподобные структуры. Так белковая молекула становится компактнее и занимает меньше места в клетке.

В каждом процессе, происходящем в организме, участвуют десятки, а то и сотни различных белков. Доля белков составляет более 50% сухой массы клеток. Одни белки являются строительным материалом клеток, другие работают при сокращении мышц, третьи защищают организм от инфекций. С помощью ферментов — белков-катализаторов — происходят почти все химические реакции в организме.

Сложные углеводы

Как и белки, сложные углеводы образуются из молекул-блоков. Так, блоками гликогена являются молекулы простого углевода — глюкозы. Глюкоза в организме играет роль источника энергии, а в виде гликогена создаются запасы глюкозы. В соединениях с белками и другими органическими веществами углеводы выполняют структурную функцию.

Жиры

Жиры — нерастворимые в воде органические вещества. В состав молекулы жира обычно входят молекулы глицерина и жирных кислот. Жиры образуют плазматические мембраны клеток, они накапливаются в клетках жировой ткани, которая выполняет в организме защитные функции. Так же, как и глюкоза, жиры являются источником энергии. Молекула жира запасает больше энергии, чем молекула глюкозы, однако клетка добывает энергию из жиров значительно дольше, чем из углеводов.