Окислительно-восстановительные реакции. По изменению степени окисления все химические реакции можно разделить на два типа

Классификацию химических реакций в неорганической и органической химии осуществляют на основании различных классифицирующих признаков, сведения о которых приведены в таблице ниже.

По изменению степени окисления элементов

Первый признак классификации — по изменению степени окисления элементов, образующих реагенты и продукты.
а) окислительно-восстановительные
б) без изменения степени окисления
Окислительно-восстановительными называют реакции, сопровождающиеся изменением степеней окисления химических элементов, входящих в состав реагентов. К окислительно-восстановительным в неорганической химии относятся все реакции замещения и те реакции разло­жения и соединения, в которых участвует хотя бы одно прос­тое вещество. К реакциям, идущим без изменения степе­ней окисления элементов, образующих реагенты и продукты реакции, относятся все реакции обмена.

По числу и составу реагентов и продуктов

Химические реакции классифицируются по характеру процесса, т.е по числу и составу реагентов и продуктов.

Реакциями соединения называют химические реакции, в результате которых сложные молекулы получаются из нескольких более простых, например:
4Li + O 2 = 2Li 2 O

Реакциями разложения называют химические реакции, в результате которых простые молекулы получаются из более сложных, например:
CaCO 3 = CaO + CO 2

Реакции разложения можно рассматривать как процессы, обратные соединению.

Реакциями замещения называют химические реакции, в результате которых атом или группа атомов в молекуле вещества замещается на другой атом или группу атомов, например:
Fe + 2HCl = FeCl 2 + H 2 

Их отличительный признак - взаимодействие простого вещества со сложным. Такие реакции есть и в органической химии.
Однако понятие «замещение» в органике шире, чем в неорганической химии. Если в молекуле исходного вещества какой-либо атом или функциональная группа заменяются на другой атом или группу, это тоже реакции замещения, хотя с точки зрения неорганической химии процесс выглядит как реакция обмена.
— обмена (в том числе и нейтрализации).
Реакциями обмена называют химические реакции, протекающие без изменения степеней окисления элементов и приводящие к обмену составных частей реагентов, например:
AgNO 3 + KBr = AgBr + KNO 3

По возможности протекать в обратном направлении

По возможности протекать в обратном направлении – обратимые и необратимые.

Обратимыми называют химические реакции, протекающие при данной температуре одновременно в двух противоположных направлениях с соизмеримыми скоростями. При записи уравнений таких реакций знак равенства заменяют противоположно направленными стрелками. Простейшим примером обратимой реакции является синтез аммиака взаимодействием азота и водорода:

N 2 +3H 2 ↔2NH 3

Необратимыми называют реакции, протекающие только в прямом направлении, в результате которых образуются продукты, не взаимодействующие между собой. К необратимым относят химические реакции, в результате которых образуются малодиссоциированные соединения, происходит выделение большого количества энергии, а также те, в которых конечные продукты уходят из сферы реакции в газообразном виде или в виде осадка, например:

HCl + NaOH = NaCl + H2O

2Ca + O 2 = 2CaO

BaBr 2 + Na 2 SO 4 = BaSO 4 ↓ + 2NaBr

По тепловому эффекту

Экзотермическими называют химические реакции, идущие с выделением теплоты. Условное обозначение изменения энтальпии (теплосодержания) ΔH, а теплового эффекта реакции Q. Для экзотермических реакций Q > 0, а ΔH < 0.

Эндотермическими называют химические реакции, идущие с поглощением теплоты. Для эндотермических реакций Q < 0, а ΔH > 0.

Реакции соединения как правило будут реак­циями экзотермическими, а реакции разложения - эндотер­мическими. Редкое исключение - реакция азота с кислородом - эндотермиче­ская:
N2 + О2 → 2NO – Q

По фазе

Гомогенными называют реакции, протекающие в однородной среде (однородные вещества, в одной фазе, например г-г, реакции в растворах).

Гетерогенными называют реакции, протекающие в неоднородной среде, на поверхности соприкосновения реагирующих веществ, находящихся в разных фазах, например, твердой и газообразной, жидкой и газообразной, в двух несмешивающихся жидкостях.

По использованию катализатора

Катализатор – вещество ускоряющее химическую реакцию.

Каталитические реакции протекают только в присутствии катализатора (в том числе и ферментативные).

Некаталитические реакции идут в отсутствие катализатора.

По типу разрыва связей

По типу разрыва химической связи в исходной молекуле различают гомолитические и гетеролитические реакции.

Гомолитическими называются реакции, при которых в результате разрыва связей образуются частицы, имеющие неспаренный электрон - свободные радикалы.

Гетеролитическими называют реакции, протекающие через образование ионных частиц - катионов и анионов.

  • гомолитические (равный разрыв, каждый атом по 1 электрону получает)
  • гетеролитический (неравный разрыв – одному достается пара электронов)

Радикальными (цепными) называют химические реакции с участием радикалов, например:

CH 4 + Cl 2 hv →CH 3 Cl + HCl

Ионными называют химические реакции, протекающие с участием ионов, например:

KCl + AgNO 3 = KNO 3 + AgCl↓

Электрофильными называют гетеролитические реакции органических соединений с электрофилами - частицами, несущими целый или дробный положительный заряд. Они подразделяются на реакции электрофильного замещения и электрофильного присоединения, например:

C 6 H 6 + Cl 2 FeCl3 → C 6 H 5 Cl + HCl

H 2 C =CH 2 + Br 2 → BrCH 2 –CH 2 Br

Нуклеофильными называют гетеролитические реакции органических соединений с нуклеофилами - частицами, несущими целый или дробный отрицательный заряд. Они подразделяются на реакции нуклеофильного замещения и нуклеофильного присоединения, например:

CH 3 Br + NaOH → CH 3 OH + NaBr

CH 3 C(O)H + C 2 H 5 OH → CH 3 CH(OC 2 H 5) 2 + H 2 O

Классификация органических реакций

Классификация органических реакций приведена в таблице:

По этому признаку различают окислительно-восстановительные реакции и реакции, протекающие без изменения степеней окисления химических элементов.

К ним относится множество реакций, в том числе все реакции замещения, а также те реакции соединения и разложения, в которых участвует хотя бы одно простое вещество, например:


Как вы помните, коэффициенты в сложных окислительно-восстановительных реакциях расставляют, используя метод электронного баланса:

В органической химии ярким примером окислительно-восстановительных реакций могут служить свойства альдегидов.

1. Они восстанавливаются в соответствующие спирты:

2. Альдегиды окисляются в соответствующие кислоты:


Сущность всех приведенных выше примеров окислительно-восстановительных реакций была представлена с помощью хорошо известного вам метода электронного баланса. Он основан на сравнении степеней окисления атомов в реагентах и продуктах реакции и на балансировании числа электронов в процессах окисления и восстановления. Этот метод применяют для составления уравнений реакций, протекающих в любых фазах. Этим он универсален и удобен. Но в то же время он имеет серьезный недостаток - при выражении сущности окислительно-восстановительных реакций, протекающих в растворах, указываются частицы, которые реально не существуют.

В этом случае удобнее использовать другой метод - метод полуреакций. Он основан на составлении ионноэлектронных уравнений для процессов окисления и восстановления с учетом реально существующих частиц и последующем суммировании их в общее уравнение. В этом методе не используют понятие «степень окисления», а продукты определяются при выводе уравнения реакции.

Продемонстрируем этот метод на примере: составим уравнение окислительно-восстановительной реакции цинка с концентрированной азотной кислотой.

1. Записываем ионную схему процесса, которая включает только восстановитель и продукт его окисления, окислитель и продукт его восстановления:

2. Составляем ионно-электронное уравнение процесса окисления (это 1-я полуреакция):

3. Составляем ионно-электронное уравнение процесса восстановления (это 2-я полуреакция):

Обратите внимание: электронно-ионные уравнения составляются в соответствии с законом сохранения массы и заряда.

4. Записываем уравнения полуреакций так, чтобы число электронов между восстановителем и окислителем было сбалансированно:

5. Суммируем почленно уравнения полуреакций. Составляем общее ионное уравнение реакции:

Проверяем правильность составления уравнения реакции в ионном виде:

  • Соблюдение равенства по числу атомов элементов и по числу зарядов
    1. Число атомов элементов должно быть равно в левой и правой частях ионного уравнения реакции.
    2. Общий заряд частиц в левой и правой частях ионного уравнения должен быть одинаков.

6. Записываем уравнение в молекулярной форме. Для этого добавляем к ионам, входящим в ионное уравнение, необходимое число ионов противоположного заряда:

Реакции, идущие без изменения степеней окисления химических элементов . К ним, например, относятся все реакции ионного обмена, а также многие реакции соединения, например:

многие реакции разложения:

реакции этерификации:

Протекание химических реакций в целом обусловлено обменом частицами между реагирующими веществами. Часто обмен сопровождается переходом электронов от одной частицы к другой. Так, при вытеснении цинком меди в растворе сульфата меди (II):

Zn(т) +CuSO 4 (р)=ZnSO 4 (p)+Cu(т)

электроны от атомов цинка переходят к ионам меди:

Zn 0 = Zn 2+ + 2e ,

Cu 2+ + 2e = Cu 0 ,

или суммарно: Zn 0 + Cu 2+ = Zn 2+ + Cu 0 .

Процесс потери электронов частицей называют окислением , а процесс приобретения электронов – восстановлением . Окисление и восстановление протекают одновременно, поэтому взаимодействия, сопровождающиеся переходом электронов от одних частиц к другим, называют окислительно-восстановительными реакциями (ОВР).

Для удобства описания ОВР используют понятие степени окисления – величины, численно равной формальному заряду, который приобретает элемент, исходя из предположения, что все электроны каждой из его связи перешли к более электроотрицательному атому данного соединения. Протекание ОВР сопровождается изменением степеней окисления элементов участвующих в реакции веществ. При восстановлении степень окисления элемента уменьшается, при окислении – увеличивается. Вещество, в состав которого входит элемент, понижающий степень окисления, называют окислителем ; вещество, в состав которого входит элемент, повышающий степень окисления, называют восстановителем .

Степень окисления элемента в соединении определяют в соответствии со следующими правилами :

1) степень окисления элемента в простом веществе равна нулю;

2) алгебраическая сумма всех степеней окисления атомов в молекуле равна нулю;

3) алгебраическая сумма всех степеней окисления атомов в сложном ионе, а также степень окисления элемента в простом одноатомном ионе равна заряду иона;

4) отрицательную степень окисления проявляют в соединении атомы элемента, имеющего наибольшую электроотрицательность;

5) максимально возможная (положительная) степень окисления элемента соответствует номеру группы, в которой расположен элемент в Периодической таблице Д.И. Менделеева.

Ряд элементов в соединениях проявляют постоянную степень окисления:

1) фтор, имеющий наивысшую среди элементов электроотрицательность, во всех соединениях имеет степень окисления –1;

2) водород в соединениях проявляет степень окисления +1, кроме гидридов металлов (–1);

3) металлы IA подгруппы во всех соединениях имеют степень окисления +1;

4) металлы IIA подгруппы, а также цинк и кадмий во всех соединениях имеют степень окисления +2;

5) степень окисления алюминия в соединениях +3;

6) степень окисления кислорода в соединениях равна –2, за исключением соединений, в которых кислород присутствует в виде молекулярных ионов: О 2 + , О 2 - , О 2 2 - , О 3 - , а также фторидов O x F 2 .

Степени окисления атомов элементов в соединении записывают над символом данного элемента, указывая вначале знак степени окисления, а затем ее численное значение, например, K +1 Mn +7 O 4 -2 , в отличие от заряда иона, который записывают справа, указывая вначале зарядовое число, а затем знак: Fe 2+ , SO 4 2– .

Окислительно-восстановительные свойства атомов различных элементов проявляются в зависимости от многих факторов, важнейшие из которых – электронное строение элемента, его степень окисления в веществе, характер свойств других участников реакции.

Соединения, в состав которых входят атомы элементов в своей максимальной (положительной) степени окисления, например, K +1 Mn +7 O 4 -2 , K 2 +1 Cr +6 2 O 7 -2 , H + N +5 O 3 -2 , Pb +4 O 2 -2 , могут только восстанавливаться, выступая в качестве окислителей.

Соединения, содержащие элементы в их минимальной степени окисления, например, N -3 H 3 , H 2 S -2 , HI -1 , могут только окисляться и выступать в качестве восстановителей.

Вещества, содержащие элементы в промежуточных степенях окисления, например H + N +3 O 2 , H 2 O 2 -1 , S 0 , I 2 0 , Cr +3 Cl 3 , Mn +4 O 2 -2 , обладают окислительно-восстановительной двойственностью . В зависимости от партнера по реакции, такие вещества способны и принимать, и отдавать электроны. Состав продуктов восстановления и окисления также зависит от многих факторов, в том числе среды, в которой протекает химическая реакция, концентрации реагентов, активности партнера по окислительно-восстановительному процессу. Чтобы составить уравнение окислительно-восстановительной реакции, необходимо знать, как изменяются степени окисления элементов, в какие другие соединения переходят окислитель и восстановитель.

Классификация окислительно-восстановительных реакций. Различают четыре типа окислительно-восстановительных реакций.

1. Межмолекулярные – реакции, в которых окислитель и восстановитель – разные вещества: Zn 0 +Cu +2 SO 4 =Zn +2 SO 4 +Cu 0 .

2. При термическом разложении сложных соединений, в состав которых входят окислитель и восстановитель в виде атомов разных элементов, происходят окислительно-восстановительные реакции, называемые внутримолекулярными : (N -3 H 4) 2 Cr +6 2 O 7 = N 2 0 + Cr +3 2 O 3 + 4H 2 O.

3. Реакции диспропорционирования могут происходить, если соединения, содержащие элементы в промежуточных степенях окисления, попадают в условия, где они оказываются неустойчивыми (например, при повышенной температуре). Степень окисления этого элемента и повышается и понижается: 2H 2 O 2 -1 = O 0 2 + 2 H 2 O -2 .

4. Реакции контрпропорционирования – это процессы взаимодействия окислителя и восстановителя, в состав которых входит один и тот же элемент в разных степенях окисления. В результате продуктом окисления и продуктом восстановления является вещество с промежуточной степенью окисления атомов данного элемента:

Na 2 S +4 O 3 + 2Na 2 S -2 + 6HCl = 3S 0 + 6NaCl + 3H 2 O.

Существуют также реакции смешанного типа. Например, к внутримолекулярной реакции контрпропорционирования относится реакция разложения нитрата аммония: N -3 H 4 N +5 O 3 = N +1 2 O + 2H 2 O.

Составление уравнений окислительно-восстановительных реакций. Для составления уравнений окислительно-восстановительных реакций наиболее часто используют метод электронного баланса и метод электронно-ионных полуреакций.

Метод электронного баланса обычно используют для составления уравнений окислительно-восстановительных реакций, протекающих между газами, твердыми веществами и в расплавах. Последовательность операций следующая:

1. Записывают формулы реагентов и продуктов реакции в молекулярном виде: FeCl 3 + H 2 S → FeCl 2 + S + HCl;

2. Определяют степени окисления атомов, меняющих ее в процессе реакции: Fe 3+ Cl 3 + H 2 S -2 → Fe 2+ Cl 2 + S 0 + HCl;

3. По изменению степеней окисления устанавливают число электронов, отдаваемых восстановителем, и число электронов, принимаемых окислителем; составляют электронный баланс с учетом принципа равенства числа отдаваемых и принимаемых электронов:

Fe +3 +1e = Fe +2 ½ ∙2

S -2 – 2e = S 0 ½ ∙1

4. Множители электронного баланса записывают в уравнение окислительно-восстановительной реакции как основные стехиометрические коэффициенты: 2FeCl 3 + H 2 S → 2FeCl 2 + S + HCl.

5. Подбирают стехиометрические коэффициенты остальных участников реакции: 2FeCl 3 + H 2 S = 2FeCl 2 + S + 2HCl.

Метод электронно-ионных полуреакций применяют при составлении уравнений реакций, протекающих в водном растворе, а также реакций с участием веществ, в которых трудно определить степени окисления элементов. Согласно этому методу выделяют следующие главные этапы составления уравнения реакций:

1. Записывают общую молекулярную схему процесса с указанием восстановителя, окислителя и среды, в которой протекает реакция (кислотная, нейтральная или щелочная). Например:

SO 2 + K 2 Cr 2 O 7 + H 2 SO 4 (разб.) → ...

2. Учитывая диссоциацию электролитов в водном растворе, данную схему представляют в виде молекулярно-ионного взаимодействия. Ионы, степени окисления атомов которых не изменяются, в схеме не указывают, за исключением ионов Н + и ОН - :

SO 2 + Cr 2 O 7 2– + H + → ...

3. Определяют степени окисления восстановителя и окислителя, а также продуктов их взаимодействия:

4. Записывают материальный баланс полуреакции окисления и восстановления:

5. Суммируют полуреакции, учитывая принцип равенства отданных и принятых электронов:

SO 2 + 2H 2 O – 2e = SO 4 2– + 4H + ½ ∙3

Cr 2 O 7 2– + 14H + + 6e = 2Cr 3+ + 7H 2 О ½ ∙1

3SO 2 + 6H 2 O + Cr 2 O 7 2– + 14H + = 3SO 4 2– + 12H + + 2Cr 3+ + 7H 2 О

сокращая одноименные частицы, получают общее ионно-молекулярное уравнение:

3SO 2 + Cr 2 O 7 2– + 2H + = 3SO 4 2– + 2Cr 3+ + H 2 О.

6. Добавляют ионы, не участвовавшие в процессе окисления-восстановления, уравнивают их количества слева и справа, записывают молекулярное уравнение реакции:

3SO 2 + K 2 Cr 2 O 7 + H 2 SO 4 (разб) = Cr 2 (SO 4) 3 + K 2 SO 4 + H 2 O.

При составлении материального баланса полуреакций окисления и восстановления, когда изменяется число атомов кислорода, входящих в состав частиц окислителя и восстановителя, следует учитывать, что в водных растворах связывание или присоединение кислорода происходит с участием молекул воды и ионов среды.

В процессе окисления на один атом кислорода, присоединяющийся к частице восстановителя, в кислотной и нейтральной средах расходуется одна молекула воды и образуются два иона Н + ; в щелочной среде расходуются два гидроксид-иона ОН - и образуется одна молекула воды.

В процессе восстановления для связывания одного атома кислорода частицы окислителя в кислотной среде расходуются два иона Н + и образуется одна молекула воды; в нейтральной и щелочной средах расходуется одна молекула Н 2 О и образуются два иона ОН - (табл.2).

Таблица 2

Баланс атомов кислорода

в окислительно-восстановительных реакциях

При составлении уравнений следует учитывать, что окислитель (или восстановитель) могут расходоваться не только в основной окислительно-восстановительной реакции, но и при связывании образующихся продуктов реакции, т.е. выступать в роли среды и солеобразователя. Примером, когда роль среды играет окислитель, служит реакция окисления металла в азотной кислоте:

3Cu + 2HNO 3(окислитель) + 6HNO 3(среда) = 3Cu(NO 3) 2 + 2NO + 4H 2 O

или 3Cu + 8HNO 3(разб) = 3Cu(NO 3) 2 + 2NO + 4H 2 O.

Примером, когда восстановитель является средой, в которой протекает реакция, служит реакция окисления соляной кислоты дихроматом калия: 6HCl (вос-тель) + K 2 Cr 2 O 7 + 8HCl (среда) = 2CrCl 3 + 3Cl 2 +2KCl + 7H 2 O

или 14HCl + K 2 Cr 2 O 7 = 2CrCl 3 + 3Cl 2 +2KCl + 7H 2 O.

При расчете количественных, массовых и объемных соотношений участников окислительно-восстановительных реакций, используют основные стехиометрические законы химии, и, в частности, закон эквивалентов, учитывая, что число эквивалентности окислителя равно числу электронов, которые принимает одна формульная единица окислителя, а число эквивалентности восстановителя равно числу электронов, которые отдает одна формульная единица восстановителя.


Похожая информация.


7.1. Основные типы химических реакций

Превращения веществ, сопровождающиеся изменением их состава и свойств, называются химическими реакциями или химическими взаимодействиями. При химических реакциях не происходит изменения состава ядер атомов.

Явления, при которых изменяется форма или физическое состояние веществ или изменяется состав ядер атомов, называются физическими. Примером физических явлений является термическая обработка металлов, при которой происходит изменение их формы (ковка), плавление металла, возгонка иода, превращение воды в лед или пар и т.д., а также ядерные реакции, в результате которых из атомов одних элементов образуются атомы других элементов.

Химические явления могут сопровождаются физическими превращениями. Например, в результате протекания химических реакций в гальваническом элементе возникает электрический ток.

Химические реакции классифицируют по различным признакам.

1. По знаку теплового эффекта все реакции делятся на эндотермические (протекающие с поглощением теплоты) и экзотермические (протекающие с выделением теплоты) (см. § 6.1).

2. По агрегатному состоянию исходных веществ и продуктов реакции различают:

    гомогенные реакции , в которых все вещества находятся в одной фазе:

    2 KOH (p-p) + H 2 SO 4(p-p) = K 2 SO (p-p) + 2 H 2 O (ж) ,

    CO (г) + Cl 2(г) = COCl 2(г) ,

    SiO 2(к) + 2 Mg (к) = Si (к) + 2 MgO (к) .

    гетерогенные реакции , вещества в которых находятся в различных фазах:

СаО (к) + СО 2(г) = СаCO 3(к) ,

CuSO 4(р-р) + 2 NaOH (р-р) = Cu(OH) 2(к) + Na 2 SO 4(р-р) ,

Na 2 SO 3(р-р) + 2HCl (р-р) = 2 NaCl (р-р) + SO 2(г) + H 2 O (ж) .

3. По способности протекать только в прямом направлении, а также в прямом и обратном направлении различают необратимые и обратимые химические реакции (см. § 6.5).

4. По наличию или отсутствую катализаторов различают каталитические и некаталитические реакции (см. § 6.5).

5. По механизму протекания химические реакции делятся на ионные , радикальные и др. (механизм химических реакций, протекающих с участием органических соединений, рассматривается в курсе органической химии).

6. По состоянию степеней окисления атомов, входящих в состав реагирующих веществ различают реакции, протекающие без изменения степени окисления атомов, и с изменением степени окисления атомов (окислительно–восстановительные реакции ) (см. § 7.2) .

7. По изменению состава исходных веществ и продуктов реакции различают реакции соединения, разложения, замещения и обмена . Эти реакции могут протекать как с изменением, так и без изменения степеней окисления элементов, табл . 7.1.

Таблица 7.1

Типы химических реакций

Общая схема

Примеры реакций, протекающих без изменения степени окисления элементов

Примеры окислительно-восстановительных реакций

Соединения

(из двух или нескольких веществ образуется одно новое вещество)

HCl + NH 3 = NH 4 Cl;

SO 3 + H 2 O = H 2 SO 4

H 2 + Cl 2 = 2HCl;

2Fe + 3Cl 2 = 2FeCl 3

Разложения

(из одного вещества образуется несколько новых веществ)

А = В + С + D

MgCO 3 MgO + CO 2 ;

H 2 SiO 3 SiO 2 + H 2 O

2AgNO 3 2Ag + 2NO 2 + O 2

Замещения

(при взаимодействии веществ атомы одного вещества замещают в молекуле атомы другого вещества)

А + ВС = АВ + С

CaCO 3 + SiO 2 CaSiO 3 + CO 2

Pb(NO 3) 2 + Zn =
Zn(NO 3) 2 + Pb;

Mg + 2HCl = MgCl 2 + H 2

(два вещества обмениваются своими составными частями, образуя два новых вещества)

АВ + СD = AD + CВ

AlCl 3 + 3NaOH =
Al(OH) 3 + 3NaCl;

Ca(OH) 2 + 2HCl = CaCl 2 + 2H 2 O

7.2. Окислительно–восстановительные реакции

Как указывалось выше, все химические реакции подразделяются на две группы:

Химические реакции, протекающие с изменением степени окисления атомов, входящих в состав реагирующих веществ, называются окислительно–восстановительными.

Окисление – это процесс отдачи электронов атомом, молекулой или ионом:

Na o – 1e = Na + ;

Fe 2+ – e = Fe 3+ ;

H 2 o – 2e = 2H + ;

2 Br – – 2e = Br 2 o .

Восстановление – это процесс присоединения электронов атомом, молекулой или ионом:

S o + 2e = S 2– ;

Cr 3+ + e = Cr 2+ ;

Cl 2 o + 2e = 2Cl – ;

Mn 7+ + 5e =Mn 2+ .

Атомы, молекулы или ионы, принимающие электроны, называются окислителями . Восстановителями являются атомы, молекулы или ионы, отдающие электроны.

Принимая электроны окислитель в процессе протекания реакции восстанавливается, а восстановитель – окисляется. Окисление всегда сопровождается восстановлением и наоборот. Таким образом, число электронов, отдаваемых восстановителем, всегда равно числу электронов, принимаемых окислителем .

7.2.1. Степень окисления

Степень окисления – это условный (формальный) заряд атома в соединении, рассчитанный в предположении, что оно состоит только из ионов. Степень окисления принято обозначать арабской цифрой сверху символа элемента со знаком “+” или “–” . Например, Al 3+ , S 2– .

Для нахождения степеней окисления руководствуются следующими правилами:

    степень окисления атомов в простых веществах равна нулю;

    алгебраическая сумма степеней окисления атомов в молекуле равна нулю, в сложном ионе – заряду иона;

    степень окисления атомов щелочных металлов всегда равна +1;

    атом водорода в соединениях с неметаллами (CH 4 , NH 3 и т.д) проявляет степень окисления +1, а с активными металлами его степень окисления равна –1 (NaH, CaH 2 и др.);

    атом фтора в соединениях всегда проявляет степень окисления –1;

    степень окисления атома кислорода в соединениях обычно равна –2, кроме пероксидов (H 2 O 2 , Na 2 O 2), в которых степень окисления кислорода –1, и некоторых других веществ (надпероксидов, озонидов, фторидов кислорода).

Максимальная положительная степень окисления элементов в группе обычно равна номеру группы. Исключением являются фтор, кислород, поскольку их высшая степень окисления ниже номера группы, в которой они находятся. Элементы подгруппы меди образуют соединения, в которых их степень окисления превышает номер группы (CuO, AgF 5 , AuCl 3).

Максимальная отрицательная степень окисления элементов, находящихся в главных подгруппах периодической системы может быть определена вычитанием из восьми номера группы. Для углерода это 8 – 4 = 4, для фосфора – 8 – 5 = 3.

В главных подгруппах при переходе от элементов сверху вниз устойчивость высшей положительной степени окисления уменьшается, в побочных подгруппах, наоборот, сверху вниз увеличивается устойчивость более высоких степеней окисления.

Условность понятия степени окисления можно продемонстрировать на примере некоторых неорганических и органических соединений. В частности, в фосфиновой (фосфорноватистой) Н 3 РО 2 , фосфоновой (фосфористой) Н 3 РО 3 и фосфорной Н 3 РО 4 кислотах степени окисления фосфора соответственно равны +1, +3 и +5, в то время как во всех этих соединениях фосфор пятивалентен. Для углерода в метане СН 4 , метаноле СН 3 ОН, формальдегиде СН 2 O , муравьиной кислоте НСООН и оксиде углерода (IV) СO 2 степени окисления углерода составляют соответственно –4, –2, 0, +2 и +4, в то время как валентность атома углерода во всех этих соединениях равна четырем.

Несмотря на то, что степень окисления является условным понятием, она широко используется при составлении окислительно–восстановительных реакций.

7.2.2. Важнейшие окислители и восстановители

Типичными окислителями являются:

1. Простые вещества, атомы которых обладают большой электроотрицательностью. Это, в первую очередь, элементы главных подгрупп VI и VII групп периодической системы: кислород, галогены. Из простых веществ самый сильный окислитель – фтор.

2. Соединения, содержащие некоторые катионы металлов в высоких степенях окисления: Pb 4+ , Fe 3+ , Au 3+ и др.

3. Соединения, содержащие некоторые сложные анионы, элементы в которых находятся в высоких положительных степенях окисления: 2– , – – и др.

К восстановителям относят:

1. Простые вещества, атомы которых обладают низкой электроотрицательностью – активные металлы. Восстановительные свойства могут проявлять и неметаллы, например, водород и углерод.

2. Некоторые соединения металлов, содержащие катионы (Sn 2+ , Fe 2+ , Cr 2+), которые, отдавая электроны, могут повышать свою степень окисления.

3. Некоторые соединения, содержащие такие простые ионы как, например I – , S 2– .

4. Соединения, содержащие сложные ионы (S 4+ O 3) 2– , (НР 3+ O 3) 2– , в которых элементы могут, отдавая электроны, повышать свою положительную степень окисления.

В лабораторной практике наиболее часто используются следующие окислители:

    перманганат калия (KMnO 4);

    дихромат калия (K 2 Cr 2 O 7);

    азотная кислота (HNO 3);

    концентрированная серная кислота (H 2 SO 4);

    пероксид водорода (H 2 O 2);

    оксиды марганца (IV) и свинца (IV) (MnO 2 , PbO 2);

    расплавленный нитрат калия (KNO 3) и расплавы некоторых других нитратов.

К восстановителям, которые применяются в лабораторной практике относятся:

  • магний (Mg), алюминий (Al) и другие активные металлы;
  • водород (Н 2) и углерод (С);
  • иодид калия (KI);
  • сульфид натрия (Na 2 S) и сероводород (H 2 S);
  • сульфит натрия (Na 2 SO 3);
  • хлорид олова (SnCl 2).

7.2.3. Классификация окислительно–восстановительных реакций

Окислительно-восстановительные реакции обычно разделяют на три типа: межмолекулярные, внутримолекулярные и реакции диспропорционирования (самоокисления-самовосстановления).

Межмолекулярные реакции протекают с изменением степени окисления атомов, которые находятся в различных молекулах. Например:

2 Al + Fe 2 O 3 Al 2 O 3 + 2 Fe,

C + 4 HNO 3(конц) = CO 2 + 4 NO 2 + 2 H 2 O.

К внутримолекулярным реакциям относятся такие реакции, в которых окислитель и восстановитель входят в состав одной и той же молекулы, например:

(NH 4) 2 Cr 2 O 7 N 2 + Cr 2 O 3 + 4 H 2 O,

2 KNO 3 2 KNO 2 + O 2 .

В реакциях диспропорционирования (самоокисления-самовосстановления) атом (ион) одного и того же элемента является и окислителем, и восстановителем:

Cl 2 + 2 KOH KCl + KClO + H 2 O,

2 NO 2 + 2 NaOH = NaNO 2 + NaNO 3 + H 2 O.

7.2.4. Основные правила составления окислительно-восстановительных реакций

Составление окислительно-восстановительных реакций осуществляют согласно этапам, представленным в табл. 7.2.

Таблица 7.2

Этапы составления уравнений окислительно-восстановительных реакций

Действие

Определить окислитель и восстановитель.

Установить продукты окислительно-восстановительной реакции.

Составить баланс электронов и с его помощью расставить коэффициенты у веществ, изменяющих свои степени окисления.

Расставить коэффициенты у других веществ, принимающих участие и образующихся в окислительно-восстановительной реакции.

Проверить правильность расстановки коэффициентов путем подсчета количества вещества атомов (как правило, водорода и кислорода), находящихся в левой и правой частях уравнения реакции.

Правила составления окислительно-восстановительных реакций рассмотрим на примере взаимодействия сульфита калия с перманганатом калия в кислой среде:

1. Определение окислителя и восстановителя

Находящийся в высшей степени окисления марганец не может отдавать электроны. Mn 7+ будет принимать электроны, т.е. является окислителем.

Ион S 4+ может отдать два электрона и перейти в S 6+ , т.е. является восстановителем. Таким образом, в рассматриваемой реакции K 2 SO 3 – восстановитель, а KMnO 4 – окислитель.

2. Установление продуктов реакции

K 2 SO 3 + KMnO 4 + H 2 SO 4 ?

Отдавая два электрона электрон, S 4+ переходит в S 6+ . Сульфит калия (K 2 SO 3), таким образом, переходит в сульфат (K 2 SO 4). В кислой среде Mn 7+ принимает 5 электронов и в растворе серной кислоты (среда) образует сульфат марганца (MnSO 4). В результате данной реакции образуются также дополнительные молекулы сульфата калия (за счет ионов калия, входящих в состав перманганата), а также молекулы воды. Таким образом рассматриваемая реакция запишется в виде:

K 2 SO 3 + KMnO 4 + H 2 SO 4 = K 2 SO 4 + MnSO 4 + H 2 O.

3. Составление баланса электронов

Для составления баланса электронов необходимо указать те степени окисления, которые изменяются в рассматриваемой реакции:

K 2 S 4+ O 3 + KMn 7+ O 4 + H 2 SO 4 = K 2 S 6+ O 4 + Mn 2+ SO 4 + H 2 O.

Mn 7+ + 5 е = Mn 2+ ;

S 4+ – 2 е = S 6+ .

Число электронов, отдаваемых восстановителем должно равняться числу электронов, принимаемых окислителем. Поэтому в реакции должно участвовать два Mn 7+ и пять S 4+ :

Mn 7+ + 5 е = Mn 2+ 2,

S 4+ – 2 е = S 6+ 5.

Таким образом, число электронов, отдаваемых восстановителем (10) будет равно числу электронов, принимаемых окислителем (10).

4. Расстановка коэффициентов в уравнении реакции

В соответствии с балансом электронов перед K 2 SO 3 необходимо поставить коэффициент 5, а перед KMnO 4 – 2. В правой части перед сульфатом калия ставим коэффициент 6, поскольку к пяти молекулам K 2 SO 4 , образующимся при окислении сульфита калия, добавляется одна молекула K 2 SO 4 в результате связывания ионов калия, входящих в состав перманганата. Поскольку в качестве окислителя в реакции участвуют две молекулы перманганата, в правой части образуются также две молекулы сульфата марганца. Для связывания продуктов реакции (ионов калия и марганца, входящих в состав перманганата) необходимо три молекулы серной кислоты, поэтому в результате реакции образуется три молекулы воды. Окончательно получаем:

5 K 2 SO 3 + 2 KMnO 4 + 3 H 2 SO 4 = 6 K 2 SO 4 + 2 MnSO 4 + 3 H 2 O.

5. Проверка правильности расстановки коэффициентов в уравнении реакции

Число атомов кислорода в левой части уравнения реакции равно:

5 · 3 + 2 · 4 + 3 · 4 = 35.

В правой части это число составит:

6 · 4 + 2 · 4 + 3 · 1 = 35.

Число атомов водорода в левой части уравнения реакции равно шести и соответствует числу этих атомов в правой части уравнения реакции.

7.2.5. Примеры окислительно–восстановительных реакций с участием типичных окислителей и восстановителей

7.2.5.1. Межмолекулярные реакции окисления-восстановления

Ниже в качестве примеров рассматриваются окислительно-восстановительные реакции, протекающие с участием перманганата калия, дихромата калия, пероксида водорода, нитрита калия, иодида калия и сульфида калия. Окислительно-восстановительные реакции с участием других типичных окислителей и восстановителей рассматриваются во второй части пособия (“Неорганическая химия”).

Окислительно-восстановительные реакции с участием перманганата калия

В зависимости от среды (кислая, нейтральная, щелочная) перманганат калия, выступая в качестве окислителя, дает различные продукты восстановления, рис. 7.1.

Рис. 7.1. Образование продуктов восстановления перманганата калия в различных средах

Ниже приведены реакции KMnO 4 с сульфидом калия в качестве восстановителя в различных средах, иллюстрирующие схему, рис. 7.1. В этих реакциях продуктом окисления сульфид-иона является свободная сера. В щелочной среде молекулы КОН не принимают участие в реакции, а лишь определяют продукт восстановления перманганата калия.

5 K 2 S + 2 KMnO 4 + 8 H 2 SO 4 = 5 S + 2 MnSO 4 + 6 K 2 SO 4 + 8 H 2 O,

3 K 2 S + 2 KMnO 4 + 4 H 2 O 2 MnO 2 + 3 S + 8 KOH,

K 2 S + 2 KMnO 4 (KOH) 2 K 2 MnO 4 + S.

Окислительно-восстановительные реакции с участием дихромата калия

В кислой среде дихромат калия является сильным окислителем. Смесь K 2 Cr 2 O 7 и концентрированной H 2 SO 4 (хромпик) широко используется в лабораторной практике в качестве окислителя. Взаимодействуя с восстановителем одна молекула дихромата калия принимает шесть электронов, образуя соединения трехвалентного хрома:

6 FeSO 4 +K 2 Cr 2 O 7 +7 H 2 SO 4 = 3 Fe 2 (SO 4) 3 +Cr 2 (SO 4) 3 +K 2 SO 4 +7 H 2 O;

6 KI + K 2 Cr 2 O 7 + 7 H 2 SO 4 = 3 I 2 + Cr 2 (SO 4) 3 + 4 K 2 SO 4 + 7 H 2 O.

Окислительно-восстановительные реакции с участием пероксида водорода и нитрита калия

Пероксид водорода и нитрит калия проявляют преимущественно окислительные свойства:

H 2 S + H 2 O 2 = S + 2 H 2 O,

2 KI + 2 KNO 2 + 2 H 2 SO 4 = I 2 + 2 K 2 SO 4 + H 2 O,

Однако, при взаимодействии с сильными окислителями (такими как, например, KMnO 4), пероксид водорода и нитрит калия выступают в качестве восстановитеей:

5 H 2 O 2 + 2 KMnO 4 + 3 H 2 SO 4 = 5 O 2 + 2 MnSO 4 + K 2 SO 4 + 8 H 2 O,

5 KNO 2 + 2 KMnO 4 + 3 H 2 SO 4 = 5 KNO 3 + 2 MnSO 4 + K 2 SO 4 + 3 H 2 O.

Необходимо отметить, что пероксид водорода в зависимости от среды восстанавливается согласно схеме, рис. 7.2.

Рис. 7.2. Возможные продукты восстановления пероксида водорода

При этом в результате реакций образуется вода или гидроксид-ионы:

2 FeSO 4 + H 2 O 2 + H 2 SO 4 = Fe 2 (SO 4) 3 + 2 H 2 O,

2 KI + H 2 O 2 = I 2 + 2 KOH.

7.2.5.2 . Внутримолекулярные реакции окисления-восстановления

Внутримолекулярные окислительно-восстановительные реакции протекают, как правило, при нагревании веществ, в молекулах которых присутствуют восстановитель и окислитель. Примерами внутримолекулярных реакций восстановления-окисления являются процессы термического разложения нитратов и перманганата калия:

2 NaNO 3 2 NaNO 2 + O 2 ,

2 Cu(NO 3) 2 2 CuO + 4 NO 2 + O 2 ,

Hg(NO 3) 2 Hg + NO 2 + O 2 ,

2 KMnO 4 K 2 MnO 4 + MnO 2 + O 2 .

7.2.5.3 . Реакции диспропорционирования

Как выше отмечалось, в реакциях диспропорционирования один и тот же атом (ион) является одновременно окислителем и восстановителем. Рассмотрим процесс составления этого типа реакций на примере взаимодействия серы со щелочью.

Характерные степени окисления серы: 2, 0, +4 и +6. Выступая в качестве восстановителя элементарная сера отдает 4 электрона:

S o 4е = S 4+ .

Сера окислитель принимает два электрона:

S o + 2е = S 2– .

Таким образом, в результате реакции диспропорционирования серы образуются соединения, степени окисления элемента в которых 2 и справа +4:

3 S + 6 KOH = 2 K 2 S + K 2 SO 3 + 3 H 2 O.

При диспропорционировании оксида азота (IV) в щелочи получаются нитрит и нитрат – соединения, в которых степени окисления азота соответственно равны +3 и +5:

2 N 4+ O 2 + 2 КOH = КN 3+ O 2 + КN 5+ O 3 + H 2 O,

Диспропорционирование хлора в холодном растворе щелочи приводит к образованию гипохлорита, а в горячем – хлората:

Cl 0 2 + 2 KOH = KCl – + KCl + O + H 2 O,

Cl 0 2 + 6 KOH 5 KCl – + KCl 5+ O 3 + 3H 2 O.

7.3. Электролиз

Окислительно–восстановительный процесс, протекающий в растворах или расплавах при пропускании через них постоянного электрического тока, называют электролизом. При этом на положительном электроде (аноде) происходит окисление анионов. На отрицательном электроде (катоде) восстанавливаются катионы.

2 Na 2 CO 3 4 Na + О 2 + 2CO 2 .

При электролизе водных растворов электролитов наряду с превращениями растворенного вещества могут протекать электрохимические процессы с участием ионов водорода и гидроксид-ионов воды:

катод (–): 2 Н + + 2е = Н 2 ,

анод (+): 4 ОН – – 4е = О 2 + 2 Н 2 О.

В этом случае восстановительный процесс на катоде происходит следующим образом:

1. Катионы активных металлов (до Al 3+ включительно) не восстанавливаются на катоде, вместо них восстанавливается водород.

2. Катионы металлов, расположенные в ряду стандартных электродных потенциалов (в ряду напряжений) правее водорода, при электролизе восстанавливаются на катоде до свободных металлов.

3. Катионы металлов, расположенные между Al 3+ и Н + , на катоде восстанавливаются одновременно с катионом водорода.

Процессы, протекающие в водных растворах на аноде, зависят от вещества, из которого сделан анод. Различают аноды нерастворимые (инертные ) и растворимые (активные ). В качестве материала инертных анодов используют графит или платину. Растворимые аноды изготавливают из меди, цинка и других металлов.

При электролизе растворов с инертным анодом могут образовываться следующие продукты:

1. При окислении галогенид-ионов выделяются свободные галогены.

2. При электролизе растворов, содержащих анионы SO 2 2– , NO 3 – , PO 4 3– выделяется кислород, т.е. на аноде окисляются не эти ионы, а молекулы воды.

Учитывая вышеизложенные правила, рассмотрим в качестве примера электролиз водных растворов NaCl, CuSO 4 и KOH с инертными электродами.

1). В растворе хлорид натрия диссоциирует на ионы.

Реакции без изменения степеней окисления элементов. Условия одностороннего протекания химических реакций. Гидролиз.

Тема 4.1.1. Правило Бертолле

Без изменения степеней окисления протекают реакции обмена. Они подчиняются правилу Бертолле: реакция обмена в растворах электролитов происходят необратимо и до конца, если в качестве продуктов получают малорастворимые вещества (осадки и газы), малодиссоциирующиеся соединения (слабые электролиты или комплексные ионы). Таким образом, условия одностороннего протекания реакций – это:

1. Образование мало ионизирующихся молекул. Пример – реакция нейтрализации:

NaOH(p) + HCl(p) = NaCl(p) + Н 2 O(p) – образуется вода.

Запишем реакцию в ионном виде:

Na + (p) + OH - (p) + H + (p) + Cl - (p) = Na + (p) + Cl - (p) + Н 2 O(p)

OH - (p) + H + (p) = Н 2 O(p)

2.Образование слабоионизирующихся комплексных ионов:

Cd(OH) 2 (к) + 6 NH 3 (p) = (OH) 2

Cd(OH) 2 растворяется за счет образования комплекса.

3. Образование малорастворимого соединения:

AgNO 3 (p) + NaCl(p) = AgCl(к)¯ + NaNO 3 (p)

Ag + (p) + Cl - (p) = AgCl(к)¯

4. Образование летучего соединения:

Na 2 S(p) + 2 HCl(p) = H 2 S(г)­ + 2 NaCl(p)

S 2 - (p) + 2 H + (p) = H 2 S(г)­.

Без изменения от окисления обычно протекает гидролиз. Гидролиз – реакция обменного разложения между водой и соответствующим соединением с образованием малодиссоциируемого соединения.

Проводим опыт: Возьмем кристаллы NaCl, Na 2 CO 3 и AlCl 3 и растворим в дистиллированной воде. С помощью индикатора проверим характер среды полученных растворов.

Тема 4.1.2. Окраска индикаторов

4.1.2. Окраска индикаторов

Индикаторы – вещества, которые меняют свою окраску в зависимости от концентрации протонов.

Таблица 1. Окраска некоторых индикаторов в зависимости от характера среды раствора

При добавлении лакмуса фиолетового к бесцветным растворам NaCl, Na 2 CO 3 и AlCl 3 наблюдаем появление различной окраски (см. таблицу 2).

Таблица 2. Окраска индикатора лакмуса фиолетового в растворах различных солей и соответствующий ей характер среды

Тема 4.1.3. Гидролиз ионных соединений

Как объяснить, что в растворах солей возникает разная среда: кислая, щелочная или почти нейтральная среда, то есть появляется избыток ионов H + или OH - ?

При растворении в виде соли распадаются на ионы в общем виде:

КА ↔ К q + + A q - ,

где К - катион, А - анион, q - заряд ионов.

Катион или анион создает вокруг себя электрическое поле (чем больше заряд, тем больше электрическое поле) и своим полем воздействует на молекулу воды, то есть её поляризует. Молекула воды становиться более полярной и связь O-H разрывается, то есть протекает гидролиз. Поляризующее действие тона, то есть способность разрывать связь в молекуле H 2 O прямо пропорционально заряду и обратно пропорционально радиусу иона. Чем больше заряд и меньше радиус, тем сильнее поляризующее действие иона.

Степень гидролиза зависит от природы катионов и анионов. Чем сильнее поляризующее действие ионов, тем в большей степени протекает гидролиз, то есть гидролиз соли вызывают те ионы, которые вследствие поляризующего воздействия на молекулы воды приводят к их распаду и образованию малодиссоциирующих частиц.

Классификация ионов по их способности к гидролизу приведена в таблице 3. Гидролиз вызывают катионы слабых оснований, катионы сильных оснований гидролиз не вызывают. Так, катионы Zn вступают в гидролитическое взаимодействие с водой, так как гидроксид цинка(II) Zп(ОН) 2 – основание слабое. Гидроксид натрия NаОН – сильное основание, катионы Na гидролиз не вызывают.

К анионам, вызывающим гидролиз, относятся кислотные остатки слабых кислот. Кислотные остатки сильных кислот гидролиз не вызывают. Так, фторид-ион F‾ (кислотный остаток слабой фтороводородной кислоты НF) способен вызвать гидролиз, тогда как хлорид-ион Сl‾ (кислотный остаток сильной хлороводородной кислоты HCl) – слабополяризующий ион, не вызывающий гидролиза.

Таблица 3. Классификация ионов по их способности к гидролизу

Заряд ионов

Ионы, поляризующие молекулы воды и вызывающие гидролиз

Слабополяризующие ионы, не вызывающие гидролиза

Катионы слабых оснований

Анионы слабых кислот

Катионы сильных

оснований

Анионы сильных

кислот

Одно-зарядные

NH 4 +

F – , NO 2 , CN,

CH 3 COO

Li + , Na + , K + ,

Rb + , Cs +

Cl, Br, I, NO 3 , ClO 4 , ClO 3

Двух-зарядные

Be 2+ , Mg 2+ , Sn 2+ , Pb 2+ , Mn 2+ , Fe 2+ , Ni 2+ , Cu 2+ , Zn 2+ , AlOH 2+ , CrOH 2+ , FeOH 2+

S 2 – , Se 2 , Te 2 , CO 3 2 , SiO 3 2 , SeO 3 2 , TeO 3 2 , HPO 4 2 , HAsO 4 2

Ca 2+ , Sr 2+ , Ba 2+

SO 4 2

Трех-зарядные

Al 3 + , Cr 3 + , Fe 3 +

PO 4 3 , AsO 4 3

Возможны четыре случая гидролиза. Рассмотрим их подробнее.

Отсутствие гидролиза соли

Гидролиз соединения, образованного слабополяризующими ионами, не вызывающими гидролиза. Например:

NaCl ↔ Na + + Cl -

То есть NaCl + H 2 O ≠ реакция практически не идет.

Гидролиз практически не протекает, рН среды не меняется.

Вывод: соль, образованная катионом сильного основания и анионом сильной кислоты гидролизу не подвергается. Среда раствора нейтральная.

Гидролиз по катиону

Гидролиз соединения, образованного среднеполяризующим катионом, поляризующим молекулы воды, и слабополяризующим анионом. Например, AlCl 3:

AlCl 3 ↔ Al 3+ + 3 Cl -

Cl - + H 2 O ≠ реакция практически не идет.

Гидролиз идет по катиону в две стадии:

В ионном виде:

1. Al 3+ + H 2 O ↔ AlOH 2+ + H +

2. AlOH 2+ + H 2 O ↔ Al(OH) 2 + + H +

3. Al(OH) 2 + + H 2 O ↔ Al(OH) 3 + H + - практически не идет

Полные уравнения:

1. AlCl 3 + H 2 O ↔ Al(OH)Сl 2 + HCl

2. Al(OH)Сl 2 + H 2 O ↔ Al(OH) 2 Cl + HCl

3 Al(OH) 2 Cl + H 2 O ↔ Al(OH) 3 + HCl - практически не идет

Основной вклад в рН раствора вносит первая ступень гидролиза. Глубину гидролиза соли (по катиону или аниону) оценивают значениями констант гидролиза. Определим численное значение константы гидролиза катиона Al 3+ по первой ступени.

Учтем, что соль AlCl 3 образована катионом слабого основания Al(OH) 3 , которое в растворе ступенчато диссоциирует:

I. Al(OH) 3 ↔ Al(OH) 2 + + OH -

II. Al(OH) 2 + ↔ AlOH 2+ + OH -

III. AlOH 2+ ↔ Al 3+ + ОН -

Для этого по закону действующих масс запишем выражение константы равновесия для 1 ступени реакции гидролиза.

1. Al 3+ + H 2 O ↔ AlOH 2+ + H +

В разбавленном растворе концентрация воды – величина постоянная, то есть = const. Поэтому её включают в константу равновесия; тогда

К с1 · [ H 2 O ] = K г1 – константа гидролиза, то есть:

Зная, что ионное произведение воды К w = × =10 - 14 , выражение для К г1 можно переписать в виде:

Учитывая, что продукт гидролиза по 1 стадии может диссоциировать в растворе (cм. уравнение III), получим:

Отсюда следует вывод: чем слабее основание, тем сильнее протекает гидролиз по катиону

2. AlOH 2+ + H 2 O ↔ Al(OH) 2 + + H +

3. Al(OH) 2 + + H 2 O ↔ Al(OH) 3 + H +

Так как К г3 очень маленькая величина, по последней ступени гидролиз при обычных условиях практически не идет. Эти уравнения, как правило, не записывают, то есть для многозарядных ионов обычно соблюдается правило:

число ступеней гидролиза на 1 меньше, чем заряд иона.

Таким образом, полные уравнения гидролиза хлорида алюминия записывают следующим образом:

1. AlCl 3 + H 2 O ↔ Al(OH)Сl 2 + HCl

2. Al(OH)Сl 2 + H 2 O ↔ Al(OH) 2 Cl + HCl

Общий вывод: соль, образованная катионом слабого основания и анионом сильной кислоты подвергается гидролизу по катину. Среда раствора кислая, рН < 7.

Гидролиз по аниону

Гидролиз соединения, образованного слабополяризующим катионом и среднеполяризующим молекулы воды анионом. Например, Na 2 CO 3 или Na 3 РO 4.

Na 2 CO 3 ↔ 2 Na + + CO 3 2 -

Na + + H 2 O ≠ реакция практически не идет;

Гидролиз идет по аниону преимущественно по первой стадии.

В ионном виде:

1. CO 3 2 - + H 2 O ↔ HCO 3 - + OH -

2. HCO 3 - + H 2 O ↔ H 2 CO 3 + OH -

Учитывая, что слабая угольная кислота диссоциирует в растворе на ионы, константы кислотной ионизации по первой и второй ступеням равны соответственно:

I. H 2 CO 3 ↔ HCO 3 - + Н +

II. HCO 3 - ↔ CO 3 2 - + Н + `

и ионное произведение воды К w = · =10 - 14 , то есть , выражения для констант гидролиза аниона CO 3 2 - по первой К г1 и второй К г2 ступеням можно переписать в виде:

Отсюда следует вывод: чем слабее кислота, тем сильнее протекает гидролиз по аниону.

Значение К г2 К г1

Таким образом, полное уравнение гидролиза карбоната натрия записывает следующим образом:

Na 2 CO 3 + H 2 O Û NaOH + NaHCO 3 .

Общий вывод: соль, образованная катионом сильного основания и анионом слабой кислоты, подвергается гидролизу по аниону, среда щелочная, рН > 7.

Гидролиз и по катиону и по аниону

Гидролиз соединения, образованного катионом и анионом, поляризующим молекулы воды.

Обычно это соединения с ионно-ковалентным типом связи, поэтому уравнения диссоциации для них не пишут. Гидролиз таких солей протекает необратимо с образованием слабого основания и слабой кислоты. Характер среды определяется относительной силой образовавшихся соединений.

Например:

Тема 4.1.4. Гидролиз ковалентного соединения

Ковалентные соединения - это соединения неметаллов с неметаллами, например ClF 3 , SiCl 4 , Cl 3 N, SCl 4 , BCl 3 и т.д. Такие соединения подвергаются необратимому разложению водой с образованием двух кислот: бескислородной и кислородсодержащей. Так, гидролиз фторида хлора (III) приводит к образованию хлористой и фтороводородной кислот:

Другие примеры:

Тема 4.1.5. Факторы, влияющие на степень гидролиза

Согласно принципу Ле Шателье степень гидролиза возрастает с разбавлением раствора (увеличением концентрации воды). Например, степень гидролиза a карбоната натрия в 0,1 М растворе составляет 2,7 %, а в 0, 001 М растворе - 34 %. Степень гидролиза - это отношение числа частиц, подвергшихся гидролизу, к общему числу частиц:

где С г - молярная концентрация гидролизованной части вещества, С - общая молярная концентрация раствора.

Степень гидролиза также возрастает с увеличением температуры раствора, так как нагревание способствует процессу распада молекул воды на ионы:

H 2 O(ж) ↔ H + (р) + OH - (р), ΔН 0 = 55,64 кДж/моль

Практика к главе 4.1 гидролиз

Пример 1. Составьте уравнения гидролиза хлорида цинка (II) ZnCl 2 . Укажите рН и характер среды.

Запишем уравнение электролитической диссоциации хлорида цинка (II):

Рассмотрим взаимодействие образовавшихся ионов с водой:

Среднеполяризующий катион, подвергается гидролизу:

так как образуются катиoны водорода, формируется кислая среда, рН < 7.

Слабополяризующий анион, гидролиз не протекает:

Полное уравнение гидролиза соли:

При гидролизе соли слабого основания и сильной кислоты в растворе возникает кислая среда.

Лакмус фиолетовый - в красный цвет;

Метиловый оранжевый - в красный цвет.

Пример 2. Рассмотрим г идролиз фосфата (V) калия К 3 РО 4 :

а) электролитическая диссоциация фосфата (V) калия:

б) взаимодействие ионов с водой:

- слабополяризующий катион:

Гидролиз не протекает.

- среднеполяризующий анион, при обычных условиях идет гидролиз по двум ступеням:

в) Cуммарное уравнение гидролиза соли:

– первая ступень:

– вторая ступень: .

При гидролизе соли сильного основания и слабой кислоты в растворе возникает щелочная среда, рН > 7.

В растворе этой соли индикаторы окрашиваются:

Лакмус фиолетовый - в синий цвет;

Метиловый оранжевый - в желтый цвет;

Фенолфталеин - в малиновый цвет.

Пример 3 . Гидролиз сульфида алюминия (III) Al 2 S 3 и карбоната бериллия ВеСО 3 .

Соль слабого основания и слабой кислоты подвергается полному гидролизу с образованием основания и кислоты:

Пример 4. Отсутствие гидролиза в растворе NaNO 3:

а) электролитическая диссоциация нитрата (V) натрия:

б) ионы , слабо воздействующие на молекулы воды (слабополяризующие ионы), гидролиз не вызывают:

гидролиз не протекает.

Гидролиз не протекает.

Соль сильного основания и сильной кислоты гидролизу не подвергается. Среда нейтральная, рН = 7.

Пример 5. Гидролиз ковалентных соединений. Ковалентные соединения (неметаллов с неметаллами) подвергаются необратимому разложению водой с образованием двух кислот. Так, гидролиз фторида хлора (III) приводит к образованию хлористой и фтороводородной кислот:

Не забывайте, что гидролиз протекает обычно без изменения степеней окисления элементов.

Пример 6. Гидролиз по аниону может протекать в соответствии со следующими уравнениями:

I ступень: ,

II вторая ступень: .

Приведите выражения константы гидролиза по этим ступеням. Рассчитайте константы гидролиза, используя ионное произведение воды

К w = · =10 - 14

и константы ионизации сероводородной кислоты:

Сравните глубину протекания гидролиза по первой и второй ступеням. Какой ступенью практически ограничивается гидролиз по ?

Приведем выражение и вычислим значение константы гидролиза по I ступени:

Приведем выражение и вычислим значение константы гидролиза по II ступени:

Значение К г2 пренебрежительно мало по сравнению со значением К г1 . Это свидетельствует о том, что вторая ступень гидролиза практически не протекает.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

1. Составьте уравнения гидролиза следующих соединений: CoCl 2 , Na 2 SiO 3 , BCl 3 . Укажите рН и характер среды. Какое из данных соединений подвергается полному гидролизу? Укажите окраску индикаторов в этих растворах. Приведите выражение константы гидролиза по иону SiO 3 2 - .

2. Составьте уравнения гидролиза следующих соединений: K 2 SO 3 , Cr 2 (SO 4) 3 , PCl 3 . Укажите рН и характер среды. Какое из данных соединений подвергается полному гидролизу? Приведите выражение константы гидролиза по иону Cr 3+ .

3. Составьте уравнения гидролиза следующих соединений: FeBr 2 , K 3 PO 4 , PCl 5 . Укажите рН и характер среды. Какое из данных соединений подвергается полному гидролизу? Приведите выражение константы гидролиза по иону РO 4 3 - .

4. Составьте уравнения гидролиза следующих соединений: K 2 SiO 3 , Be(NO 3) 2 , PI 3 . Укажите рН и характер среды. Какое из данных соединений подвергается полному гидролизу? Укажите окраску индикаторов в этих растворах.

5. Составьте уравнения гидролиза следующих соединений: AlCl 3 , Na 2 S, BBr 3 . Укажите рН и характер среды. Какое из данных соединений подвергается полному гидролизу? Приведите выражение константы гидролиза по иону Al 3+ .

Составьте уравнения гидролиза следующих соединений: FeSO 4 , Na 2 SiO 3 , SiCl 4 . Укажите рН и характер среды. Какое из данных соединений подвергается полному гидролизу?

Составьте уравнения гидролиза следующих соединений: Ni(NO 3) 2 , Na 3 PO 4 , PBr 5 . Укажите рН и характер среды. Какое из данных соединений подвергается полному гидролизу?

Составьте уравнения гидролиза следующих соединений: K 2 SO 3 , SnCl 2 , SCl 4 . Укажите рН и характер среды. Какое из данных соединений подвергается полному гидролизу?